• Title/Summary/Keyword: vibration velocity

Search Result 1,406, Processing Time 0.028 seconds

An Experimental Study on Brake Judder via the Frequency Analysis of the Brake System and Vehicle System of a Commercial Vehicle (상용차량의 브레이크 시스템과 차량 시스템 주파수 분석을 통한 브레이크 저더의 실험적 고찰)

  • Moon, ll-Dong;Kim, Jong-Dae;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1131-1138
    • /
    • 2007
  • This paper studies experimentally on the building-up process for the amplitude of a commercial truck vibration induced by brake judder. A front axle drum equipped with a drum brake system is utilized for this experiment. A brake dynamo test, a real vehicle ride test and a real vehicle braking test are performed for the analysis of brake judder. The brake dynamo test measures judder by applying brake chamber pressures of 1, 2 and 3 bar at initial brake pad temperatures of $100^{\circ}C$ and $150^{\circ}C$. In order to assess the vertical acceleration at the front axle, the real vehicle ride test on a straight test road with velocities of 20, 40, 60 and 80 km/h is performed. The real vehicle braking test is carried out at the deceleration rate of 0.2g from a velocity of 90km/h for evaluating the vertical, lateral and longitudinal accelerations both at the front axle and at the cab floor under the driver's seat. The magnitudes and frequencies of the measured peak accelerations from the brake dynamo test, the real vehicle ride test and the real vehicle braking test are comparatively analyzed. This paper shows that the vibration produced by brake judder is built up due to the brake system's peak acceleration frequency being close to the vehicle ride mode's frequency.

Low-Noise Design of Passage of Idle Speed Control Actuator in Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 디자인)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Park, Yong-Hwan;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.283-290
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an Idle Speed control Actuator (ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying Computational Fluid Dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

  • PDF

Study of Determination in Measurement System for Safely Managing Debris-Flow (안전한 토석류 관리를 위한 계측기 선정에 관한 연구)

  • Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

The effect of Reynolds number on the elliptical cylinder wake

  • Shi, Xiaoyu;Alam, Md. Mahbub;Bai, Honglei;Wang, Hanfeng
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.525-532
    • /
    • 2020
  • This work numerically investigates the effects of Reynolds number ReD (= 100 - 150), cross-sectional aspect ratio AR = ( 0.25 -1.0), and attack angle α (= 0° - 90°) on the forces, Strouhal number, and wake of an elliptical cylinder, where ReD is based on the freestream velocity and cylinder cross-section height normal to the freestream flow, AR is the ratio of the minor axis to the major axis of the elliptical cylinder, and α is the angle between the cylinder major axis and the incoming flow. At ReD = 100, two distinct wake structures are identified, namely 'Steady wake' (pattern I) and 'Karman wake followed by a steady wake (pattern II)' when AR and α are varied in the ranges specified. When ReD is increased to 150, an additional wake pattern, 'Karman wake followed by secondary wake (pattern III)' materializes. Pattern I is characterized by two steady bubbles forming behind the cylinder. Pattern II features Karman vortex street immediately behind the cylinder, with the vortex street transmuting to two steady shear layers downstream. Inflection angle αi = 32°, 37.5° and 45° are identified for AR = 0.25, 0.5 and 0.75, respectively, where the wake asymmetry is the greatest. The αi effectively distinguishes the dependence on α and AR of force and vortex shedding frequency at either ReD. In Pattern III, the Karman street forming behind the cylinder is modified to a secondary vortex street. At a given AR and α, ReD = 150 renders higher fluctuating lift and Strouhal number than ReD = 100.

A Proposal of Output Method of Round Window Stimulation Type Middle Ear Implants using Acoustic Transmission (공기 전도형 출력을 갖는 정원창 자극형 인공중이의 출력방식 제안)

  • Seong, Kiwoong;Lee, KyuYup;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.678-684
    • /
    • 2018
  • In order to broaden the indication of middle ear implant, research has been actively conducted on the reverse output method that stimulates the round window. However, it is very difficult to transmit the vibration output effectively because the indivisual anatomical difference of the round window niche is very large and also the visual field is not secured even by a skilled otolaryngologic surgeon. In this paper, we propose a new reverse stimulation method of middle ear implants that transmits energy to the inner ear by using air as a medium. This can compensate for the disadvantages of the conventional method of transmitting vibration energy and minimizes the energy transfer efficiency interference due to the combination of the excitation point and the output device. It was shown that forward and backward transfer characteristics were obtained by cadaveric experiments, and it was shown that it can overcome the acoustical impedance of high round window and transmit energy to inner ear. The receiver, which is the output device of the conventional hearing aids, can generate a constant volume velocity, so it can have a high output at a limited volume, such as a round window niche. So, suggested method can overcome the high acoustical impedance of the round window and deliver acoustic energy to the inner ear.

Fluid-structure Interaction Analysis of Large Sandwich Panel Structure for Randomly Distributed Wind Load considering Gust Effects (거스트 영향이 고려된 랜덤 분포 풍하중에 대한 대형 샌드위치 패널 구조물의 유체-구조 연성해석)

  • Park, Dae Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1035-1044
    • /
    • 2013
  • Because of the high specific stiffness and strength inherent in the sandwich structure composed of facesheet that resists in-plane loads and a core that resists out-of-plane loads, it is often used for large and light-weighted structures. However, inevitably the increased flexibility allows greater deformation-based disturbances in the structures. Thus, it is necessary to analyze the structural safety. To obtain more accurate analytical results, the input disturbances must more closely simulate real load conditions; to improve accuracy, non-linear elements such as gust effects were considered. In addition, the structural safety was analyzed for the iso-grid sandwich panel structure using fluid-structure interactions. For a more realistic simulation, flow velocity fields, which consider the effects of irregular gust fluctuation, were generated and the coupled field was analyzed by mapping the pressure and displacement.

Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Kim, Sung-Tae;Park, Yong-Hwan;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

Aerodynamic flutter analysis of a new suspension bridge with double main spans

  • Zhang, W.M.;Ge, Y.J.;Levitan, M.L.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-208
    • /
    • 2011
  • Based on the ANSYS, an approach of full-mode aerodynamic flutter analysis for long-span suspension bridges has been presented in this paper, in which the nonlinearities of structure, aerostatic and aerodynamic force due to the deformation under the static wind loading are fully considered. Aerostatic analysis is conducted to predict the equilibrium position of a bridge structure in the beginning, and then flutter analysis of such a deformed bridge structure is performed. A corresponding computer program is developed and used to predict the critical flutter wind velocity and the corresponding flutter frequency of a long-span suspension bridge with double main span. A time-domain analysis of the bridge is also carried out to verify the frequency-domain computational results and the effectiveness of the approach proposed in this paper. Then, the nonlinear effects on aerodynamic behaviors due to aerostatic action are discussed in detail. Finally, the results are compared with those of traditional suspension bridges with single main span. The results show that the aerostatic action has an important influence on the flutter stability of long-span suspension bridges. As for a suspension bridge with double main spans, the flutter mode is the first anti-symmetrical torsional vibration mode, which is also the first torsional vibration mode in natural mode list. Furthermore, a double main-span suspension bridge is better in structural dynamic and aerodynamic performances than a corresponding single main-span structure with the same bridging capacity.

Numerical Investigation of Sunroof Buffeting for Hyundai Simplified Model (HSM의 썬루프 버페팅 수치해석)

  • Khondge, Ashok;Lee, Myunghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.180-188
    • /
    • 2014
  • Hyundai Motor Group(HMG) carried out experimental investigation of sunroof buffeting phenomena on a simplified car model called Hyundai simplified model(HSM). HMG invited participation from commercial CFD vendors to perform numerical investigation of sunroof buffeting for HSM model with a goal to determine whether CFD can predict sunroof buffeting behavior to sufficient accuracy. ANSYS Korea participated in this investigation and performed numerical simulations of sunroof buffeting for HSM using ANSYS fluent, the general purpose CFD code. First, a flow field validation is performed using closed sunroof HSM model for 60 km/h wind speed. The velocity profiles at three locations on the top surface of HSM model are predicted and compared with experimental measurement. Then, numerical simulations for buffeting are performed over range of wind speeds, using advanced scale resolving turbulence model in the form of detached eddy simulation (DES). Buffeting frequency and buffeting level are predicted in simulation and compared with experimental measurement. With reference to comparison between experimental measurements with CFD predictions of buffeting frequency and level, conclusion are drawn about predictive capabilities of CFD for real vehicle development.

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF