• 제목/요약/키워드: vibration software

검색결과 564건 처리시간 0.025초

Brake Noise Data Acquisition and Analysis System

  • Vadari, Vish;Niezgoski, John;Edgar, Dave;Elliot, Dan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.505-508
    • /
    • 2002
  • AN EMBEDDED PC-BASED HARDWARE AND SOFTWARE SYSTEM HAS BEEN DEVELOPED TO AUTOMATE THE DATA ACQUISITION AND ANALYSIS OF BRAKE SQUEAL. THE DEVELOPED SYSTEM INTEGRATES ADVANCED SIGNAL CONDITIONING HARDWARE AND SOFTWARE TO ACQUIRE BRAKE NOISE AND VIBRATION DATA RAPIDLY, CONSISTENTLY AND OBJECTIVELY. A SPECIAL PEAK-PICKING ALGORITHM IS USED TO DETERMINE WHEN BRAKE NOISE OCCURS DURING A STOP EVENT AND ACTUALLY DEFINE FROM WHICH CORNER OF THE VEHICLE IT ORIGINATES. A SPECIAL NOISE-RATING TABLE IS FEATURED TO ENABLE THE USER TO DEVELOP CORRELATIONS BETWEEN DRIVER RATINGS AND OBJECTIVE MEASUREMENTS.

  • PDF

홴 설계 및 소음 해석 소프트웨어 (Design and Noise Analysis Software of Fans)

  • 전완호;백승조;김창준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.270-274
    • /
    • 2001
  • Fans are widely used in household electrical appliances due to their easy usage and high performance for cooling capacity. However, the noise generated by these fans causes one of serious problems. LG electronics makes the intranet software for design and analysis of fan. Axial, sirocco and centrifugal fan can be designed and analyzed by using the IFD(Intranet Based Fans Design) software. In order to calculate the aeroacoustic noise of a fan, the numerical method, which can calculate the acoustic pressure at the blade passing frequency and its higher harmonic frequencies, has been developed. To calculate the unsteady resultant force of the blade, vortex method is used. This paper shows the overview of the software and validates the accuracy of predicted noise of fan.

  • PDF

GUI 환경을 구현한 MATLAB 기반 SDM 소프트웨어 (MATLAB Based SDM Software Embodied in a GUI Environment)

  • 박윤식;김경호;이준호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.365-368
    • /
    • 2004
  • This paper describes a MATLAB based SDM software embodied in a GUI environment (SDMTool), which is a technical high-end tool for structural dynamics modification (SDM) problems. The software is composed of four modules: 1) FE model linker module; 2) FE model updating module; 3) SDM forward problem module; 4) SDM structural optimization module. The software can be useful to engineers performing researches on structural dynamics modification and FE model updating.

  • PDF

Microcomputer를 이용(利用)한 디젤기관(機關)의 진동특성(振動特性) 분석(分析)에 관(關)한 연구 (A Study on engine characteristics of vibration using microcomputer)

  • 김성래;명병수
    • 농업과학연구
    • /
    • 제17권2호
    • /
    • pp.115-129
    • /
    • 1990
  • This study was carried out to develop a microcomputer-based data acquisition system and software for analysis of engine vibration. Due to this development of system and software, studies on the vibration of engine was able to conduct efficiently. From the display of CRT, the outputs of test was compared and analysed on a zero-base motoring. The results obtained are summarized as follows : 1. Data acquisition system in microcomputer were designed and programmed and operated accurately. 2. The result of test was easily compared in monitoring of zero-base at color monitor. 3. This system and program developed was able to control the measuring intervals, no. of channels, and no. of data as wated. 4. The type of vibration of engine was type of bi-mode from the FFT and statistical analysis. 5. The maxima of engine vibration were 9.11 G at X-axis. 11.27 G at Y-axis, and 4.9 G at Z axis for full load of net output 6. The maxima of engine vibration unloaded were 4.28 G, 5.59 G, 2.68 G at 2200 rpm.

  • PDF

중고주파수 대역의 회전형 압축기 진동소음 해석 (Vibration and Noise Analysis for Rotary Compressor in Medium-to-high Frequency Ranges)

  • 권현웅;송지훈;홍석윤;하종훈
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1033-1041
    • /
    • 2012
  • Power flow analysis(PFA) is introduced for solving the noise and vibration analysis of system structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C++}$ R4 based on power flow finite element method(PFFEM) and the noise prediction software, $NASPFA_{C++}$ R1 based on power flow boundary element method(PFBEM) are developed. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and radiated noise of the rotary compressor. PFFEM is employed to analyze the vibrational responses of the rotary compressor, and PFBEM is applied to analyze the radiation noise around rotary compressor. The vibrational energy of the structure is used as an acoustic intensity boundary condition of PFBEM. Numerical simulations are presented for the rotary compressor, and reliable results have been obtained.

직렬 4기통 엔진의 가진력 해석 (Analysis of Exciting Forces for In-Line 4 Cylinders Engine)

  • 김진훈;이수종;이우현;김정렬
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

The Comparison of the Characteristics of Displacement Isolines in the Cylindrical Green Compact under Ultrasonic Vibration

  • Prakorb, Chartpuk;Anan, Tempiam;Somchai, Luangsod;Vorawit, Voranawin
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.120-126
    • /
    • 2015
  • This research is a comparison of the characteristics of the displacement isolines due to powder-die-wall friction that arise during the compaction of ceramic powders in conventional die. It has been done using the CosmosWorks software package of the SolidWorks simulation software. The results of comparative simulation with FEM showed that the comparison of the displacement isolines and distribution of deformation of the ceramic powders. In the case of conventional uniaxial dry compaction for long length cylindrical green compact, considerable bending of the layers in the form of a cone can be observed. It is symmetry along centerline of cylindrical green compact. The distributions of the deformation of the green compacts (diameter 14 mm, height 20 mm) as a result of conventional compaction under ultrasonic vibration with power 1 and 2 kW are reduced to 4% and 6.5% when compared with conventional compaction without ultrasonic vibration respectively. Thus, density distribution can be minimized by increasing the power of ultrasonic vibration.

튜브 타입 제진용 보링바 구조설계를 위한 GUI 프로그램 개발 (Development of a GUI Program for the Design of a Vibration Control Boring Bar with a Tube-Type Structure)

  • 곽양양;박종권;홍준희;송두상
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.295-300
    • /
    • 2016
  • In the design of passive and active boring bars, the structural dimensions and shape of the vibration control boring bar are modified depending on the diameter and depth of the workpiece, which changes the dynamic behavior. Thus, the natural frequency, effective mass, and stiffness for the main structure of a tube-type boring bar need to be reset for each vibration control case. However, commercial finite element method (FEM) software and experimental modal analysis are mostly used at present despite being too time-consuming. To overcome the weaknesses of the two methods currently used for vibration control, we realized a graphical user interface (GUI) program for the modal analysis of a modified tube-type damping structure. The analysis results with the GUI program were compared to those with commercial FEM software in order to confirm the effectiveness of the former.