• Title/Summary/Keyword: vibration monitoring

Search Result 1,035, Processing Time 0.027 seconds

Evaluation of Short and Long-Term Modal Parameters of a Cable-Stayed Bridge Based on Operational Modal Analysis (운용모드해석에 기반한 사장교의 장단기 동특성 평가)

  • Park, Jong-Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.20-29
    • /
    • 2022
  • The operational modal analysis (OMA) technique, which extracts the modal parameters of a structural system using ambient vibrations, has been actively developed as a field of structural health monitoring of cable-supported bridges. In this paper, the short and long-term modal parameters of a cable-stayed bridge were evaluated using the acceleration data obtained from the two ambient vibration tests (AVTs) and three years of continuous measurements. A total of 27 vertical modes and 1 lateral mode in the range 0.1 ~ 2.5 Hz were extracted from the high-resolution AVTs which were conducted in the 6th and 19th years after its completion. Existing OMA methods such as Peak-Picking (PP), Eigensystem Realization Algorithm with Data Correlation (ERADC), Frequency Domain Decomposition (FDD) and Time Domain Decomposition (TDD) were applied for modal parameters extraction, and it was confirmed that there was no significant difference between the applied methods. From the correlation analysis between long-term natural frequencies and environmental factors, it was confirmed that temperature change is the dominant factor influencing natural frequency fluctuations. It was revealed that the decreased natural frequencies of the bridge were not due to changes in structural performance and integrity, but to the environmental effects caused by the temperature difference between the two AVTs. In addition, when the TDD technique is applied, the accuracy of extracted mode shapes is improved by adding a proposed algorithm that normalizes the sequence so that the autocorrelations at zero lag equal 1.

A Scheme on Internet-based Checking for Variant CNC Machines in Machine Shop

  • Kim, Dong-Hoon;Kim, Sun-Ho;Koh, Kwang-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1732-1737
    • /
    • 2004
  • This paper proposes Internet-based checking technique for machine-tools with variant CNC (Computerized Numerical Controller). According to the architecture of CNC, CNC is classified into two types such as CAC (Closed Architecture Controller) which is conventional CNC, and OAC (Open Architecture Controller) which is a recently introduced PC-based controller. CAC has a closed architecture and it is dependent on CNC vender specification. Because of this, it has been very difficult for users to implement an application programs in CNC domain. Therefore, an additionally special module is required for Internet-based application such as remote checking. In this case, web I/O embedded module can be efficiently applied for Internet-based checking. The module is directly attached to TCP/IP network for communication. In order to obtain the monitoring data of CNC machines, the I/O signals of the module are assigned to PLC (Programmable Logic Controller) input and output (I/O) signals within CNC domain. On the other hand, OAC has a PC-based open architecture and an additional module is not necessary for the connection with external site. Because of this, a simple DAU is just used for signal sensing and data acquisition without additional communication modules. For Internet-based remote checking of machine-tools with OAC, a user-defined daemon and application programs are implemented as the form of internal function within the PC-based controller. Internet communication is performed between the daemon program in CNC domain and web script programs in external server. Checking points defined in this research are classified into two categories such as structured point and operational point. The formal includes the vibration of bearing, temperature of spindle unit and another periodical management. And the latter includes oil checking, clamp locking/unlocking and machining on/off status.

  • PDF

A Proposal of Model Updating Method for Steel Frame Using Global/Local Responses (전역적/국부 응답을 이용한 철골조의 모델 업데이팅 기법 제안)

  • Oh, Byung-Kwan;Choi, Se-Woon;Kim, Yousok;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.401-408
    • /
    • 2015
  • Conventional model updating methods for the structures have used global structural responses which are modal parameters obtained through vibration measurements. Although models updated by modal parameters estimate global structural responses accurately, they have difficulties to predict local responses for safety assesment of structural members. The safety of structural members in the structures has been evaluated through the stress estimation based on strain measurements. Thus, this study additionally uses measured strain responses of structural members to perform model updating besides modal parameters. In the proposed method, the objective functions are set to the differences of the global and local responses obtained from updated model and measurement and those functions are minimized by NSGA-II, one of the multi-objective optimization techniques. The strain responses predicted from updated model are used for safety assessment of the steel frame structures. The proposed method are verified by numerical and experimental studies through the impact hammer tests for a steel frame specimen.

Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures

  • Lu, Lingling;Wang, Xi;Liao, Lijuan;Wei, Yanpeng;Huang, Chenguang;Liu, Yanchi
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.355-373
    • /
    • 2015
  • An optimal sensor placement (OSP) method based on structural subsection technique (SST) and model reduction technique was proposed for modal identification of truss structures, which was conducted using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and the optimal objective function value were obtained using GA in a case of the given number of sensors. Correspondingly, the optimal number of sensors was determined according to optimal objective function values in cases of the different number of sensors. The proposed method was applied on a scaled jacket offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode independence property. The experiment was also conducted to verify the effectiveness of the selected optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical results. Moreover the influence of the proposed method using different optimal algorithms and model reduction technique on optimal results was also compared. The results showed that the influence was very little.

A Study on the Seismic Resistance Design of Sway Brace Device using Internet of Things (IoT를 활용한 흔들림 방지 버팀대의 내진설계에 관한 연구)

  • Thak, Sung-In;Yu, Bong-Geun;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.58-62
    • /
    • 2017
  • There is a growing need for seismic resistance design. But it is controversial that standards of sway brace device in non-structural elements for buildings like pump waterway is vary widely. Therefore, in this study to get a valid range of sway brace device in seismic resistance design, using load test of sway brace device. As a result, load of safe range from 0 to 18.5 kN and under 29.4 kN, no structural fault of sway brace device. And using internet of things get a data of seismic resistance design from sensor node like accelerometer, GPS, tilt sensor and temperature sensor through steps of sampling and prediction. These results will be acceptable for monitoring system for seismic resistance in non-structural elements.

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.

A Study of Musculoskeletal Disorders at a Subway Train Repair Plant in Korea (국내 지하철 정비 사업장의 근골격계질환 실태조사에 관한 연구)

  • Kim, Cheol-Hong;Gwon, Yeong-Jun;Baek, Seung-Ryeol;Son, Gyeong-Il
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.121-134
    • /
    • 2004
  • A research project was conducted to study work-related musculoskeletal disorders (MSDs) at subway train repair plant in Korea. The project was consisted of 4 main parts; education on the topics of MSDs for all workers, symptom survey, medical check-up, investigation of MSD risk factors. The result of symptom survey showed that 95.2% of the respondents complained pains on at least one part of the body. After cross-sectional analysis of various information and risk factors, 86.8% of respondents were considered as active health surveillance level 1 that require continuous monitoring on their symptoms and working conditions. And 57.1% of the respondents were considered as active health surveillance level 2 that needed medical check-ups for proper medical treatment. The analysis of occupational risk factors revealed that handling of heavy object (46.15%) and repeated awkward postures (46.15%) were two most contributing risk factors for the on-set of MSD at this work site followed by static strain (7.7%), and vibration and impact (3.8%). Medical examination was performed by an industrial medicine MD on 156 workers those considered as active health surveillance level 2. The result showed that 35 workers (20.7%) were considered as MSD patient group at severe level, and 68.6 workers (68.6%) were considered as moderate group and 18 workers (10.6%) were considered minor or normal group those have no symptom.

Piezoelectric Energy Harvesting from Bridge Vibrations under Railway Loads (철도하중에 의한 교량 진동을 이용한 압전 에너지 수확)

  • Kwon, Soon-Duck;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.287-293
    • /
    • 2011
  • This paper investigates the applicability of a piezoelectric cantilever for energy supply of wireless sensor node used in structural health monitoring of bridges. By combining the constitutive equation of piezoelectric material and the dynamic equation of cantilever structure, the coupled governing equation for cantilever equipped piezoelectric patches has been addressed in matrix form. Forced excitation tests were carried out to validate the numerical model and to investigate the power output characteristics of the energy harvester. From the numerical simulation based on the measured bridge accelerations under KTX, Saemaul, Mugunghwa trains, the peak powers generated from the device were found to be 28.5 mW, 0.65 mW, 0.51 mW respectively. It is revealed from the results that bridge vibrations caused by moving loads is not a practical source for energy harvesting because of its low acceleration level, low frequency and short duration.

Mode identifiability of a cable-stayed bridge under different excitation conditions assessed with an improved algorithm based on stochastic subspace identification

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.363-389
    • /
    • 2016
  • Deficient modes that cannot be always identified from different sets of measurement data may exist in the application of operational modal analysis such as the stochastic subspace identification techniques in large-scale civil structures. Based on a recent work using the long-term ambient vibration measurements from an instrumented cable-stayed bridge under different wind excitation conditions, a benchmark problem is launched by taking the same bridge as a test bed to further intensify the exploration of mode identifiability. For systematically assessing this benchmark problem, a recently developed SSI algorithm based on an alternative stabilization diagram and a hierarchical sifting process is extended and applied in this research to investigate several sets of known and blind monitoring data. The evaluation of delicately selected cases clearly distinguishes the effect of traffic excitation on the identifiability of the targeted deficient mode from the effect of wind excitation. An additional upper limit for the vertical acceleration amplitude at deck, mainly induced by the passing traffic, is subsequently suggested to supplement the previously determined lower limit for the wind speed. Careful inspection on the shape vector of the deficient mode under different excitation conditions leads to the postulation that this mode is actually induced by the motion of the central tower. The analysis incorporating the tower measurements solidly verifies this postulation by yielding the prevailing components at the tower locations in the extended mode shape vector. Moreover, it is also confirmed that this mode can be stably identified under all the circumstances with the addition of tower measurements. An important lesson learned from this discovery is that the problem of mode identifiability usually comes from the lack of proper measurements at the right locations.

Prediction for Large Deformation of Cantilever Beam Using Strains (변형률을 이용한 외팔보의 구조 대변형 예측)

  • Park, Sunghyun;Kim, In-Gul;Lee, Hansol;Kim, Min-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.396-404
    • /
    • 2015
  • The UAV's wing has high aspect ratio that is suitable for the high altitude and long endurance. Knowing the real-time deformation of wing structure in flight, it can be utilized in structural health and loading status monitoring, improvement of control effectiveness and extraordinary vibration phenomena using displacement-strain relationship. In this paper, nonlinear displacement prediction algorithm was developed for prediction of large structural deflection in flight. The algorithm was validated through the comparison with finite element analysis results and also experimental results for several large tip displacements of cantilever beam. The predicted displacements using strains are agreed well with the measured values from laser displacement sensor.