• Title/Summary/Keyword: vibration experiments

Search Result 1,372, Processing Time 0.027 seconds

Evaluation on the Driving Characteristics of a Precise Actuator Using Piezoelectric Elements (압전소자를 이용한 정밀 액츄에이터의 구동특성 평가)

  • Kim, S.C.;Kim, S.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.45-52
    • /
    • 1995
  • A prototype of a linear piezoelectric actuator is developed and its dynamic behaviors are investigated. The actuator consists of a driving tip with two stacked piezoelectric elements and a slider. Dynamic characteristics of slider over various vibration lici of the driving tip and changes of normal force acting on the vibratory tip are examined through experiments. The moving direction of slider can be controlled by changing a phase angle between input signals applied to piezoelectric elements. A change of phase difference between input signals also have a great influence on the vibration locus of driving tip. Changes of slider motion due to different vibration loci are examined by experiments.

  • PDF

A modeling of dynamic cutting force and analysis of stability in chatter vibration (채터진동에서의 동적 절삭력의 모델링과 안정성 해석)

  • Kim, Jeong-Suk;Kang, Myeong-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1993
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is presented in order to predict the dynamic cutting force from the static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The stability analysis is carried out by a two degree of freedom system. The chatter experiments are conducted by exciting the cutting tool with an impact hammer during an orthogonal cutting. A good agreement is shown between the stability limits predicted by theory and the critical width of cut determined by experiments.

  • PDF

Combined Effect of Vibration Intensity, Grip Temperature, Noise and Pushing Power on Grip Forces and Skin Temperatures of Fingers (수지진동에서의 진동강도, 손잡이온도, 소음 및 미는 힘의 복합효과에 따른 악력 및 지단피부온의 변화)

  • Koh, Kyung-Sim;Griefahn, B.;Fritz, M.;Brode, P.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.4 s.48
    • /
    • pp.763-776
    • /
    • 1994
  • Recent studies reveal that grip forces during the hand-arm vibration are most significant for the genesis of vibration-induced white linger syndrome. Therefore, exerted grip forces and skin temperatures of fingers were regarded as dependent variables in experiments and the effects of grip temperature, noise, pushing force, vibration and the combined effect of vibration and pushing force were studied. The objectives of the present study were, first, to varify and compare the changes of grip force affected by grip temperature, noise, pushing force, vibration and the combined effect of vibration and pushing force and, second, to observe the reaction of finger skin temperature affected by above factors. Forty-six healthy male students ($25.07{\pm}2.85$) participated in five systematically permuted trials, which endured 4 minutes each other. Experiments were executed in a special chamber with an air temperature of 21C. In each experiments, the subjects were exposed to five experiment types: (1) grip force of 25N only, (2) pushing force of 50N, (3) acceleration of vibration $7.1m/sec^2(z-direction)$, (4) pink noise of 95 dB (A) and (5) combination of pushing force 50N and acceleration of vibration $7.1m/sec^2$. A repeated-measures analysis of variance (ANOVA) was performed on the grip force to test whether it was affected by noise, pushing force, vibration and pushing force. The present results show that vibration was significantly related to the increase of grip force, but the other factors, such as pushing force, noise and grip temperature had no signigicant influence on the increase of grip force, and that the reaction of finger skin temperature were significantly affected by the skin temperature at start of experiment and grip temperature, not grip force and other experimental conditions. Therefore, we suggest that the management for decreasing the grip force is meaningful to prevent the occurrence of Hand-arm vibration syndrome (HAVS).

  • PDF

Extraction of bridge flutter derivatives by a forced excitation (강제 가진에 의한 교량 플러터계수 추출)

  • Lee, Seung-Ho;Kwon, Soon-Duck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.538-544
    • /
    • 2009
  • A vibration excitation system was designed and built of forced vibration experiments for using stepping motor and load cell. The identified flutter derivatives of the thin-plate acrylic model were very close to the analytical results of the idealized plate presented by Theodorsen. Five types of sectional models were tested in the wind tunnel using the proposed forced vibration method. To investigate the frequency, amplitude and angle of attack effects on flutter derivatives.

  • PDF

Active Vibration Control of Plate with Piezoceramic Sensors and Actuators (압전세라믹이 부착된 판의 진동 제어)

  • Heo, Seok;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.471-475
    • /
    • 2001
  • This paper is concerned with the experiments on the dynamic characteristics and active vibration control of plate with piezoceramic sensors and actuators. The experimental frequency response plots can be used to verify the theoretical modeling. The active vibration control was achived by using a single-input single-output positive position feedback controller. Theoretical analysis will follow.

  • PDF

Vibration Analysis and Experiments of a Chip Mounting Device (칩마운터의 진동 해석 및 실험 분석)

  • 고병식;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1039-1042
    • /
    • 2002
  • SMD(Surface Mounting Device) which mounts electronic components as IC-Chips on PCB automatically, produces a large dynamic force and vibration. The unwanted vibrations in SMD degrade the performance of the precision device and it is the major obstacle to limit its speed for mounting. This study investigated the vibration analysis of a typical SMD to predict the natural frequencies and mode shapes. To validate the finite element analysis of SMD, the FE result was compared with that of ODS measurements. It was shown that the predicted results were well correlated with the experimental modal parameters.

  • PDF

Design and Analysis on Electromagnetic Vibration source of BLDC motor for Vibration r eduction (BLDC Motor의 전자기적 가진원 분석 및 진동저감 설계)

  • Song, Hyauk-Jin;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1126-1128
    • /
    • 2005
  • In this paper, electromagnetic vibration soruce of BLDC motor is analyzed, and a method of reducing vibration is presented. The vibration sources of BLDC motor are cogging torque and commutation torque ripple. The effectiveness of the proposed method were verified with experiments on FFT analysis.

  • PDF

Vibration Analysis of a Piezoelectric Disc for a Torsional Transducer (비틀림 변환기용 압전 원판의 진동 해석)

  • Lee, Jung-Hyun;Kim, Jin-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.911-914
    • /
    • 2005
  • The vibrational characteristics of the piezoelectric disc for a torsional vibration transducer is theoretically studied in this paper. The characteristic equation of the piezoelectric annular disc has been derived from Newton's End law and Gibb's free energy equations. With an anisotropic material property of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results were compared with the values obtained by finite element analysis and experiments

  • PDF

Process Analysis and Test for Manufacturing the Sleeve Spring Type-Torsional Vibration Damper (슬리브 스프링 형식 비틀림 진동감쇠기 제조를 위한 공정해석 및 시험)

  • Hwang, Beom-Cheol;Bae, Won-Byong;Jang, Young-Jun;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1471-1481
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, the closed form equations to predict the spring constant of a sleeve spring and the torsional characteristics of the torsional vibration damper are proposed to calculate stiffness of the damper and verified their availability through the finite element analysis and experiments. And the stability of the sleeve spring torsional vibration damper is verified by analyzing the inner star and outer star, which are the core parts of the damper, and 2-roll bending process is proposed to manufacture sleeve spring. The program to calculate the initial radius including spring-back effect is developed, and the FEA method to analyze elasto-plastic problem was verified through analysis of 90$^{\circ}$bending process. The results of the analysis are in good agreements with those of the experiments. The newly proposed method can be used as an advanced technique that remarkably curtails cost of production and replaces the conventional forming.