• Title/Summary/Keyword: vibration displacement measurement

Search Result 170, Processing Time 0.032 seconds

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정적·동적 변위 계측과 속도·가속도 추산방식 연구)

  • Heo, Seok;Lee, Bum-Ho;Jang, Il-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2011
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, CCD(charge coupled device) image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration displacement, velocity and acceleration directly without any contact. The current resolution for the displacement measurement can be seen from the results.

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정동적 변위 계측과 속도, 가속도 추산방식 연구)

  • Heo, Seok;Kwak, Moon-Kyu;Lee, Ho-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.527-532
    • /
    • 2010
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, ccd image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration measurement, velocity and acceleration directly without any contact. The current resolution of the displacement measurement is limited to 1/100 millimeter scale.

  • PDF

A Technique for Measuring Vibration Displacement Using Camera Image (카메라 영상을 이용한 진동변위 측정)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.789-796
    • /
    • 2013
  • Vibration measurements using image processing have been studied by many researchers as it can remotely measure vibration displacements at multiple points simultaneously. It is difficult, however, to obtain accurate displacement from the measured image signals because the resolution of image data is dependent on camera performance and normally lower than that of vibration transducer directly measured. This paper suggests the enhanced technique for vibration displacement measurement by applying the expected value of edge probability distribution to the varying pixel points in the image. The method can both increase the resolution limit of camera image and decrease the measurement errors. The working performance of the proposed technique is verified applying to the vibration measurement of a rotating machine.

Development of a Sensor System to Measure Real Time Vibro Displacement of Civil Structure

  • Sungjun Bum;Kim, Hiesik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.3-94
    • /
    • 2001
  • A sensor system was developed to measure displacement of civil structure at a long distance. A He-Ne Laser tube and photodiodes ware used for non-contact measurement. This system allows real time vibration displacement measurement of bridges. The measured displacement data is displayed on computer monitor graphically and also in digit. The accuracy of the displacement measurement shows 2mm in vertical vibration. It shows remote inspection of the vibration of long bridges and buildings.

  • PDF

Measurement of Aircraft Wing Deformation and Vibration Using Stereo Pattern Recognition Method (스테레오 영상을 이용한 비행 중인 항공기 날개의 변위 및 진동 측정)

  • Kim, Ho-Young;Yoon, Jong-Min;Han, Jae-Hung;Kwon, Hyuk-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.568-574
    • /
    • 2015
  • The present study was conducted by using stereo pattern recognition method(SPR method) to measure the displacement and vibration of an airplane wing in flight condition. A SPR based measurement system was developed using two visible light stereo cameras. The visible light stereo images were processed to obtain marker points by adaptive threshold method and marker filtering technique. The marker points were used to reconstruct 3D point, displacement, and vibration data. The SPR system was installed on F-16 fighter. The wing displacement and vibration were measured in flight condition. Therefore, this paper presents a possibility that SPR based measurement system using visible light stereo camera can be very useful for measuring displacement and vibration of an airplane in flight condition.

VIBRATION DISPLACEMENT MEASUREMENT TECHNOLOGY FOR CYLINDRICAL STRUCTURES USING CAMERA IMAGES

  • SON, KI-SUNG;JEON, HYEONG-SEOP;PARK, JIN-HO;PARK, JONG WON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.488-499
    • /
    • 2015
  • Acceleration sensors are usually used to measure the vibration of a structure. Although this is the most accurate method, it cannot be used remotely because these are contact-type sensors. This makes measurement difficult in areas that cannot be easily approached by surveyors, such as structures located in high or dangerous areas. Therefore, a method that can measure the structural vibration without installing sensors is required for the vibration measurement of structures located in these areas. Many conventional studies have been carried out on non-contact-type vibration measurement methods using cameras. However, they have been applied to structures with relatively large vibration displacements such as buildings or bridges, and since most of them use targets, people still have to approach the structure to install the targets. Therefore, a new method is required to supplement the weaknesses of the conventional methods. In this paper, a method is proposed to measure vibration displacements remotely using a camera without having to approach the structure. Furthermore, an estimation method for the measurement resolution and measurement error is proposed for the vibration displacement of a cylindrical structure measured using the proposed measurement method. The proposed methods are described, along with experimental results that verify their accuracy.

The Tip Position Measurement of a Flexible Robot Arm Using a Vision Sensor (비전 센서를 이용한 유연한 로봇팔의 끝점 위치 측정)

  • Shin, Hyo-Pil;Lee, Jong-Kwang;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.682-688
    • /
    • 2000
  • To improve the performance of a flexible robot arm one of the important things is the vibration displacement measurement of a flexible arm. Many types of sensors have been used to measure it, The most popular has been strain gauges which measures the deflection of the beam,. Photo sensors have also been for detecting beam displacement and accelerometers are often used to measure the beam vibration. But the vibration displacement can be obtained indirectly from these sensors. In this article a vision sensor is used as a displacement sensor to measure the vibration displacement of a flexible robot arm. Several schemes are proposed to reduce the image processing time and increase its accuracy. From the experimental results it is seen that the vision sensor can be an alternative sensor for measuring the vibration displacement and has a potential for on-line tip position control of flexible robot systems.

  • PDF

A Study on the Measurement of the Pipeline Displacement Vibration Using Accelerometers (가속도계를 이용한 배관 변위 진동 계측에 관한 연구)

  • Suh, Jin Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.476-482
    • /
    • 2014
  • The stress analysis of the pipeline is required in any kind of plant for its safe operation. For this, the displacement vibration data measured at many locations of the pipeline should be provided. In reality, the installation of the non-contact type displacement sensors such as laser displacement sensors or eddy current type proximity sensors in a narrow and confined region in the vicinity of the pipeline is almost impracticable. In this work, the general purpose piezo-ceramic accelerometers were attached on the measuring points on the pipeline and the acceleration vibration signal was acquired. The measured acceleration signal was low pass filtered and then downsampled. The resulting acceleration signal was transformed into both the time-domain and frequency-domain displacement signal utilizing the fast Fourier transform techniques. All the procedures are presented in detail. It is demonstrated that the measurement of the pipeline acceleration by using contact type accelerometers can be made for the purpose of providing the required displacement data for the stress analysis of the pipeline.

Vibration Measurements of Large-Scale Structure Using Laser and High-Speed CCD Camera (레이저와 고속 CCD 카메라를 이용한 대형구조물의 진동계측)

  • 이창복;안세호;양성훈;염정원;강동욱;김기두
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1104-1112
    • /
    • 2004
  • In this paper, we establish measurement methods of vibration frequency for three-dimensional behavior measurement of large-scale structure using laser and high-speed CCD camera. We project the diode laser having a smaller fluctuation on the object plane attached to the structure and measure the displacement of the structure using a precise relative measurement algorithm. When we use high-speed(120 frames/sec) CCD camera, we can measure the vibration frequency having the uncertainty within 0.5% by taking FFT on the displacement, from 0Hz to 40Hz. And we also confirm the reliability and economical string of the suggested measurement method of vibration frequency of the structure by showing the accuracy of displacement measurement using laser is comparable to that of relative positioning methods using GPS.

A Study on the Torsional Vibration Measurement of the Horizontal Shaft with Disks (단을 가진 수평축의 비틀림진동 측정에 관한 연구)

  • 박일수;안찬우;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.3-8
    • /
    • 1997
  • This parer was presented for the experimental results of torsional vibrations of the horizontal rotating shaft with three disks. The torsional vibrations meter used is a laser system for non-contact measurement of torsional angular vibration velocity and torsional angular vibration displacement. The distance between the disks war changed; the one that had 76mm of disk distance war called basic model, and another that had 106mm of disk distance wide model, and other that had 46mm of disk distance narrow model. In each model, outer diameter of disk was 40mm. And 45mm, or 50mm was also used to extend the effective range of frequencies. The angula vibration displacement and the angular vibration velocity in its torsional vibration were measured to obtain the stable and the unstable regions.

  • PDF