• Title/Summary/Keyword: vibration/motion detection sensor

Search Result 9, Processing Time 0.023 seconds

Ion-Based Micro Vibration Sensor for Ultra-High Frequency Vibration Detection (초고주파수 진동 감지를 위한 이온 질량기반 진동센서)

  • Kim, Kwang-Ho;Seo, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.728-732
    • /
    • 2008
  • This paper presents ion-based micro vibration sensor for the ultra-high frequency vibration detection. Presented sensor uses the motion of anion and cation in an electrolyte. Electrolyte vibration sensors have the high shock survival characteristics and a simple read-out circuit because of the small mass and own charges of ions. Presented sensor measures the induced electric potential by the mechanical-electrical coupling. It consist of electrolyte chamber and detection electrode. Electrolyte chamber was fabricated by PDMS molding. Detection electrode was made of gold evaporation on pyrex glass. Size of electrolyte chamber was designed as $600{\times}600{\times}100um$. Detection electrode had 200nm-thick and 42um-gap. In the experimental study, 5.8M sodium Chloride (NaCl) solution was used as electrolyte in 36nl-chamber. Mechanical vibration was measured from 2kHz to 4MHz.

Classification of Behavioral Patterns Associated with Sleeping in Residential Space (주거공간에서 수면 전후의 행동유형 분류)

  • Cho, Seung-Ho;Kim, Woo-Yeol;Moon, Bong-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.477-481
    • /
    • 2010
  • In this paper, we try to classify behavior patterns of a person around a bed based on a wireless sensor network system. We define five behavioral patterns and three states of a person around a bed which is described by a state machine. We collected data sensed by motion detection and vibration sensors installed around a bed from which a feature vector was extracted. Based on feature vector corresponding to behavioral patterns and the state machine, we established a model for behavioral patterns. To validate the model, experiments on subjects were performed and the model was fixed. These experimental results revealed that behavior patterns of a person around a bed can be classified well.

Detection of MIsfired Engine Cylinder by Using Directional Power Spectra of Vibration Signals (진동 신호의 방향 파워 스펙트럼을 이용한 엔진의 실화 실린더 탐지)

  • 한윤식;한우섭;이종원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 1993
  • A new signal processing technique is applied to four-cylinder spark and compression ignition engines for the diagnosis of power faults inside the cylinders. This technique utilizes two-sided directional power spectra(예S) of complex vibration signals measured from engine blocks as the patterns for engine cylinder power faults. The dPSs feature that they give not only the frequency contents but also the directivity of the engine block motion. For the automatic detection/diagnosis of cylinder power faults, pattern recognition method using multi-layer neural networks is employed. Experimental results show that the sucess rate for diagnosis of cylinder power faults using dPSs is higher than that using the conventional one-sided power spectra. The proposed technique is also tested to check the robustness to the sensor position and the engine rotational speed.

  • PDF

Robust Optical Detection Method for the Vibrational Mode of a Tuning Fork Crystal Oscillator

  • Choi, Hyo-Seung;Song, Sang-Hun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.93-95
    • /
    • 2015
  • We present an optical detection method for the fundamental vibrational mode of a tuning fork crystal oscillator in air. A focused He/Ne laser beam is directed onto the edge of one vibrating tine of the tuning fork; its vibrating motion chops the incoming laser beam and modulates the intensity. The beam with modulated intensity is then detected and converted to an electrical signal by a high-speed photo-detector. This electrical signal is a sinusoid at the resonant frequency of the tuning fork vibration, which is 32.76 kHz. Our scheme is robust enough that the sinusoidal signal is detectable at up to $40^{\circ}$ of rotation of the tuning fork.

Design and Implementation of Multi-Sensor based Smart Sensor Network using Mobile Devices (모바일 디바이스를 사용한 멀티센서 기반 스마트 센서 네트워크의 설계 및 구현)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • Wireless Sensor Networks is applied to improvement of life convenience or service like U-City as well as environment pollution, tunnel and structural health monitoring, storm, and earthquake diagnostic system. To increase the usability of sensor data and applicability, mobile devices and their facilities allow the applications of sensor networks to give mobile users and actuators the results of event detection at anytime and anywhere. In this paper, we present MUSNEMO(Multi-sensor centric Ubiquitous Smart sensor NEtwork using Mobile devices) developed system for providing more efficient and valuable information services with a variety of mobile devices and network camera integrated to WSN. Our system is performed based on IEEE 802.15.4 protocol stack. To validate system usability, we built sensor network environments where were equipped with five application sensors such magnetic, photodiode, microphone, motion and vibration. We also built and tested proposed MUSNEMO to provide a novel model for event detection systems with mobile framework.

A Survey Study on Standard Security Models in Wireless Sensor Networks

  • Lee, Sang Ho
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.4
    • /
    • pp.31-36
    • /
    • 2014
  • Recent advancement in Wireless Sensor Networks (WSNs) has paved the way for WSNs to enable in various environments in monitoring temperature, motion, sound, and vibration. These applications often include the detection of sensitive information from enemy movements in hostile areas or in locations of personnel in buildings. Due to characteristics of WSNs and dealing with sensitive information, wireless sensor nodes tend to be exposed to the enemy or in a hazard area, and security is a major concern in WSNs. Because WSNs pose unique challenges, traditional security techniques used in conventional networks cannot be applied directly, many researchers have developed various security protocols to fit into WSNs. To develop countermeasures of various attacks in WSNs, descriptions and analysis of current security attacks in the network layers must be developed by using a standard notation. However, there is no research paper describing and analyzing security models in WSNs by using a standard notation such as The Unified Modeling Language (UML). Using the UML helps security developers to understand security attacks and design secure WSNs. In this research, we provide standard models for security attacks by UML Sequence Diagrams to describe and analyze possible attacks in the three network layers.

  • PDF

Data Analysis of Inertial Sensors for Train Positioning Detection System (열차위치검지 시스템을 위한 관성센서 데이터 분석 연구)

  • Kim, Seong Jin;Park, Sungsoo;Lee, Jae-Ho;Kang, Donghoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

Design and Implementation of Fuzzy-based Algorithm for Hand-shake State Detection and Error Compensation in Mobile OIS Motion Detector (모바일 OIS 움직임 검출부의 손떨림 상태 검출 및 오차 보상을 위한 퍼지기반 알고리즘의 설계 및 구현)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.29-39
    • /
    • 2015
  • This paper describes a design and implementation of fuzzy-based algorithm for hand-shake state detection and error compensation in the mobile optical image stabilization(OIS) motion detector. Since the gyro sensor output of the OIS motion detector includes inherent error signals, accurate error correction is required for prompt hand-shake error compensation and stable hand-shake state detection. In this research with a little computation overhead of fuzzy-based algorithm, the hand-shake error compensation could be improved by quickly reducing the angle and phase error for the hand-shake frequencies. Further, stability of the OIS system could be enhanced by the hand-shake states of {Halt, Little vibrate, Big vibrate, Pan/Tilt}, classified by subdividing the hand-shake angle. The performance and stability of the proposed algorithm in OIS motion detector is quantitatively and qualitatively evaluated with the emulated hand-shaking of ${\pm}0.5^{\circ}$, ${\pm}0.8^{\circ}$ vibration and 2~12Hz frequency. In experiments, the average error compensation gain of 3.71dB is achieved with respect to the conventional BACF/DCF algorithm; and the four hand-shake states are detected in a stable manner.

Detection of Rotations in Jump Rope using Complementary Filter (상보필터를 이용한 줄넘기 회전운동 검출)

  • Yoo, Byeong-Hyeon;Heo, Gyeongyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • There are various methods to count the number of repetitive motions such as jump rope. Most of the methods use features extracted from the time-varying waves of acceleration or angular velocity, which is the main feature in the count of rotations in jump rope. However, there exist several variables and it is not easy to find the count with a single sensor. For example, accelerometer is susceptible to noise and vibration, and the angular velocity may cause a drift phenomenon, which is the main cause of the inaccurate count of jump rope rotation. In this paper, complementary filter is used to consider two sensors simultaneously and complement each other, which results in more accurate count in jump rope rotation. The proposed method can count the exact number of jump rope rotation compared to other existing methods only using one sensor value, which is confirmed through experimental results.