• 제목/요약/키워드: vessel trajectory prediction

검색결과 5건 처리시간 0.021초

AIS 및 LTE-Maritime 데이터를 활용한 항적 예측 오차 비교연구 (A Comparative Study of Vessel Trajectory Prediction Error based on AIS and LTE-Maritime Data)

  • 민지홍;이승주;조득재;백종화;박현우
    • 한국항해항만학회지
    • /
    • 제46권6호
    • /
    • pp.576-584
    • /
    • 2022
  • 기존 해상 교통안전을 위한 기반 정보는 AIS 시스템을 사용하여 왔으나, IMO의 e-Navigation 도입이 제기된 이후 LTE 통신을 활용한 초고속 해상무선통신시스템(LTE-Maritime, LTE-M)이 세계 최초로 대한민국에 구축되었다. 본 논문에서는 AIS와 LTE-Maritime을 사용하여 수집된 항적 데이터를 비교 분석하고, 두 가지 종류의 항적 데이터를 기반으로 해상 안전사고 예방에 활용될 수 있는 항적 예측을 수행하였다. AIS 대비 LTE-Maritime의 데이터 수집 간격이 조밀하고 균일하여 항적 예측 오차가 작은 것을 확인하였다. LTE-Maritime에서 수집된 데이터의 경우 데이터 송·수신 시간 간격은 AIS 대비 항적 예측 오차에 대한 영향이 약 17% 적은 것을 발견하였다. 본 연구는 AIS와 LTE-Maritime의 항적 데이터와 그 활용을 정량적으로 비교한 최초의 연구라는 점에서 의미가 있다.

가속도 예측 기반 새로운 선박 이동 경로 예측 방법 (A New Vessel Path Prediction Method Based on Anticipation of Acceleration of Vessel)

  • 김종희;정찬호;강도근;이창진
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1176-1179
    • /
    • 2020
  • 선박의 이동 경로를 예측하는 기존의 방법들은 일반적으로 위도와 경도를 직접 예측한다. 하지만, 위도와 경도를 직접 예측할 경우, 예측 모델이 출력 가능한 범위가 상당히 넓어서 예측 오차가 매우 크게 발생할 수 있다. 또한, 순환 신경망 모델 기반의 예측에서는 이전 예측 위치도 다음 위치를 예측하기 위해 사용되기 때문에 오차가 누적되는 현상도 쉽게 발생할 수 있다. 이에 따라, 제안하는 방법에서는 위도와 경도를 직접 예측하지 않고, 선박의 가속도를 예측하여, 향후 속도와 방향을 결정하고, 그 결과로 위도와 경도가 예측되는 방법을 제안한다. 실험 결과에서는 같은 순환 신경망 모델을 사용했을 때, 제안하는 방법이 기존의 직접적으로 위도와 경도를 예측하는 방법에 비해 더 적은 오차를 발생시킴을 보인다.

Deep Learning Research on Vessel Trajectory Prediction Based on AIS Data with Interpolation Techniques

  • Won-Hee Lee;Seung-Won Yoon;Da-Hyun Jang;Kyu-Chul Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.1-10
    • /
    • 2024
  • 해상 운송의 대부분을 차지하고 있는 선박의 경로를 예측하는 연구는 해상의 위험을 사전에 탐지하여 사고를 예방할 수 있다. 도로와 달리 해상에는 신호체계가 따로 존재하지 않고, 교통 관리가 어렵기에 해상 안정성을 위해 선박 경로 예측은 필수적이다. 그러나 선박의 경로 데이터셋의 시간 간격은 통신 장애로 인해 불규칙하다. 본 연구는 이 문제를 해결하기 위해 선박 경로 예측에 적합한 보간법을 사용하여 데이터의 시간 간격을 조정하는 방법을 제시한다. 또한, 선박의 경로를 예측하기 위한 선박 경로 예측 딥러닝 모델을 개발하였다. 본 연구의 모델은 선박의 실시간 경로 정보를 담고 있는 AIS 데이터를 통해 선박의 이동패턴을 파악하여 이후에 위치할 선박의 GPS 좌표를 예측하는 LSTM 모델이다. 본 논문은 선형 보간법을 사용한 데이터 전처리 방법과 선박 경로 예측에 적합한 딥러닝 모델을 제시하고, 실험을 통해 MSE 0.0131, Accuracy 0.9467로 본 논문에서 제시하는 방법의 예측 성능이 우수함을 나타낸다.

부산항 연안해역에서의 소형선박 표류 거동특성 관측 및 분석 (Field Experiments and Analysis of Drift Characteristics of Small Vessels in the Coastal Region off Busan Port)

  • 강신영;이문진
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.221-226
    • /
    • 2002
  • 표류지점 추정 모델의 환경 입력자료를 확보하기 위해 부산항 연근해에서 표류실험을 실시하였다. 실험에는 크기가 다른 4척의 선박(10, 20, 50, 90톤급)이 사용되었다. 그중 50톤급 선박에는 해류, 바람, 위치를 자동적으로 기록하는 계기들을 장착하였고, 나머지 선박들에서는 분산각 추정 연구를 위해 위치자료만 기록하였다. 각 선박들의 위치는 DGPS와 자동위치발신기(APRS)를 사용하여 기록하였다. 실험은 풍속 2~10m/s, 유속 0.5~1.5m/s의 환경에서 행하여졌으며, leeway는 선박 표류속도에서 표층의 유속성분을 제거하여 구하였다. 50톤급 선박의 leeway rate는 풍속의 약 3.6%인 것으로 분석되었으며, leeway 방정식은 $U_L$ =0.042W -0.034로 표현되었고 leeway angle은 $-30^{\circ}$~$40^{\circ}$의 범위였다.

항적 데이터 학습을 통한 추천 항로 구성에 관한 연구 (Composing Recommended Route through Machine Learning of Navigational Data)

  • 김주성;정중식;이성용;이은석
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2016년도 춘계학술대회
    • /
    • pp.285-286
    • /
    • 2016
  • 해상교통관제센터에 의해 실시간으로 수집되는 선박의 항해 데이터를 바탕으로 선박 항적 패턴 인식을 수행하고 이를 바탕으로 항적 모델을 추출하여 사전에 선위를 예측하는 기법을 제안한다. 항적 데이터의 처리와 가공, 항적 모델링을 위하여 Support Vector Regression 알고리즘이 사용되었으며, 적정 파라미터 선정을 위하여 k-fold cross validation과 grid search가 사용되었다. 제안된 항적 데이터 모델링 기법을 통하여 사전에 선박의 선위를 예측하여 해상교통과제사의 의사결정을 지원하고자 한다.

  • PDF