• Title/Summary/Keyword: vessel pressure

Search Result 1,355, Processing Time 0.027 seconds

The Analyses about Axisymmetric Deformation of a thin pressure vessel by orthotropic composites (Orthotropic 복합재료로 만든 두께가 얇은 압력용기의 변형에 관한 연구)

  • 김형원;최용규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.156-159
    • /
    • 2003
  • The analytic solution of displacements of thin cylindrical pressure vessel made by carbon fiber T700/Epoxy was obtained using equilibrium equations of orthogonal curvilinear coordinate system. Equilibrium equations with the assumed displacement field were derived from a reasonable description of the behavior of thin elastic shells using principle of virtual work. Some analyses of the theoretical solution are presented and compared with the results of hydraulic tests of the pressure vessel.

  • PDF

Development of FEA Custom Application System for Thermal Stress Evaluation of Skirt Type Joint Pressure Vessel (압력용기 Skirt부의 열응력 평가를 위한 유한요소해석 전문가시스템 개발)

  • Ye, Gyoo-Hyeon;Park, Dong-Sung;Choi, Kyeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • A custom application system, which was based on the finite element analysis, for stress on the head-skirt junction of a hot pressure vessel was developed. This is useful computer-based analysis system which designed to provide an analysis technique and knowledge conveniently available to other people. It was found the evaluation of thermal stress of several typed skirt joint of a pressure vessel could be performed early using this system.

  • PDF

Leak Detection Technique of Pressure Vessel Using Acoustic Emission Signal (음향방출 신호를 이용한 압력용기의 누설 검사기법 개발)

  • 이성재;정연식;강명창;김정석
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.95-99
    • /
    • 2004
  • In this study, the leak detection technique of pressure vessel by using acoustic emission(AE) signal is suggested experimentally. The leak of pressure vessel is located at the welding line due to welding defects. we measured the AE signal using Rl5I sensor, and examined the AE parameters in leak condition. It is investigated that the mean value of AE signal is dependent on leak source location. So the absolute mean value of AE signal is adopted as dominant AE parameter. We proposed leak detection algorithm using AE signal mean value for monitoring the leak source location.

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Pressure-Temperature Limit Curve of Reactor Vessel by ASME Code Section III and Section XI

  • M.J. Jhung;Kim, S.H.;Lee, T.J.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.498-513
    • /
    • 2001
  • Performed here is a comparative assessment study for the generation of the pressure- temperature (P/T) limit curve of the reactor vessel. Using the cooling or heating rate and vessel material properties, the stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during cool-down and heat-up. P/T limit curves are generated with respect to crack direction, clad thickness, toughness curve, cooling or heating rate and neutron fluence, and their results are compared.

  • PDF

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Pressure-temperature limit curve for reactor vessel evaluated by ASME code

  • Jhung, Myung Jo;Kim, Seok Hun;Jung, Sung Gyu
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.191-208
    • /
    • 2002
  • A comparative assessment study for a generation of the pressure-temperature (P-T) limit curve of a reactor vessel is performed in accordance with ASME code. Using cooling or heating rate and vessel material properties, stress distribution is obtained to calculate stress intensity factors, which are compared with the material fracture toughness to determine the relations between operating pressure and temperature during reactor cool-down and heat-up. P-T limit curves are analyzed with respect to defect orientation, clad thickness, toughness curve, cooling or heating rate and neutron fluence. The resulting P-T curves are compared each other.

Patch Reinforcement and Safety Evaluation for Pressure Vessel with Internal Wall Thinning (내부 부식 감육부를 갖는 압력용기의 패치 보강 및 안전성 평가)

  • Song, Tae-Kwang;Chun, Yun-Jae;Myung, Man-Sik;Kim, Yon-Jae;Lee, Tae-Hee;Park, Ji-Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.22-29
    • /
    • 2008
  • This paper provides the evaluation method for the pressure vessel with internal wall-thinning defect, which is based on ASME design criteria. Pressure vessel has wall-thinning partially and patch reinforcement has been attached for reliable operating. However, present partial wall thinning could be through wall thinning at the next inspection time with present corrosion progress speed. Therefore safety margin was calculated for various conditions from present wall-thinning condition to additive patch reinforced condition via two-dimensional and three-dimensional, geometrically linear FE analyses using elastic materials.

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

A Study on the Explosion Characteristics of Hydrogen (수소의 폭발 특성에 관한 연구)

  • Oh, Kyu-hyung;Rhie, Kwang-won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.228-234
    • /
    • 2004
  • It was discussed about explosion danger of hydrogen gas experimentally that could be happen during the handling and using. Hydrogen concentration was varied from 10 to 60 vol% for get the explosion characteristics of hydrogen and 5 kinds of cylindrical vessel were used to find the explosion characteristics of hydrogen according to the vessel volume. Initial pressure of hydrogen-air mixture was varied from 0.6 to 2 kg/cm2. Based on the experiment, explosion pressure was most high near the 30vol% of hydrogen and explosion pressure was increased slightly according to the increase of vessel volume but explosion pressure rise rate was decreased. Explosion pressure was increased linearly proportional to the initial pressure of gas mixture.