• Title/Summary/Keyword: vesicle density

Search Result 37, Processing Time 0.031 seconds

Ultrastructural Analysis of Chemical Synapses in Cultured Wild Type Drosophila Embryonic Neurons (초파리 배자 신경세포의 화학적 신경연접 미세구조)

  • Oh, Hyun-Woo;Park, Ho-Yong
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.223-230
    • /
    • 2004
  • To identify the structural basis of mutations that affect synaptic transmission we have begun quantitative ultrastructural descriptions of synapses in cultured Drosophila embryonic neurons. In wild-type cultures, synapses are distinguished by the parallel arrangement of a thickened pre- and post synaptic membrane separated by a synaptic cleft. The presynaptic active zones and postsynaptic densities are defined by electron dense material close to the membrane. Presynaptic regions are also characterized by the presence of one or more electron dense regions, presynaptic densities, around which a variable number of small, clear core synaptic vesicles (mean $35.1{\pm}1.44$ nm in diameter) are clustered. Subsets of these vesicles are in direct contact with either the presynaptic density or the membrane and are considered morphologically docked. A small number of larger, dense core vesicles are also observed in most presynaptic profiles.

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

Fine Structure of the Cutaneous Pigments in the Black Widow Spider, Latrodectus mactans (검은과부거미 (Latrodectus mactans) 피부 색소의 미세구조에 관한 연구)

  • Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.503-512
    • /
    • 1998
  • Fine structure of the cutaneous pigments in the black widow spider, Latrodectus mactans are studied with light and electron microscopes. The cutaneous pigments are only observed in epidermal layer just beneath the cuticle. These pigments are compactly distributed around the spinnerets which located at caudal area of the abdomen. According to the fine structural characteristics of the pigment granules, two main types of guanine pigment granules-carotenoid vesicles and reflecting platelets - are observed in the cytoplasm of the epidermal cells. Morphological features of these pigment granules are characterized as the electron dense carotenoid vesicles and the electron lucent reflecting platelets. Marginal electron density of the carotenoid vesicle is different from that of internal region, whereas the reflecting platelets have laminated crystalline granules. Typiral structures of these pigment granules are very similar to those of invertebrate's chromatophores, especially erythrophores and iridophores. Moreover differentiation of these pigment granules are also originated from the small vesicles of Golgi complexes similarly to those of cutaneous chromatophores.

  • PDF

Visualization of Extracellular Vesicles of Prokaryotes and Eukaryotic Microbes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.96-101
    • /
    • 2018
  • The release of nanoscale membrane-bound vesicles is common in all three domains of life. These vesicles are involved in a variety of biological processes such as cell-to-cell communication, horizontal gene transfer, and substrate transport. Prokaryotes including bacteria and archaea release membrane vesicles (MVs) (20 to 400 nm in diameter) into their extracellular milieu. In spite of structural differences in cell envelope, both Gram-positive and negative bacteria produce MVs that contain the cell membrane of each bacterial species. Archaeal MVs characteristically show surface-layer encircling the vesicles. Filamentous fungi and yeasts as eukaryotic microbes produce bilayered exosomes that have varying electron density. Microbes also form intracellular vesicles and minicells that are similar to MVs and exosomes in shape. Electron and fluorescence microscopy could reveal the presence of DNA in MVs and exosomes. Given the biogenesis of extracellular vesicles from the donor cell, in situ high-resolution microscopy can provide insights on the structural mechanisms underlying the formation and release of microbial extracellular vesicles.

Quantitative Ultrastructural Analysis of Endings Presynaptic to the Tooth Pulp Afferent Terminals in the Trigeminal Oral Nucleus

  • Lee, Suk-Ki;Kim, Tae Heon;Lee, Cheon-Hee;Park, Sook Kyung;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.133-139
    • /
    • 2016
  • The ultrastructural parameters related to synaptic release of endings which are presynaptic to tooth pulp afferent terminals (p-endings) were analyzed to understand the underlying mechanism for presynaptic modulation of tooth pulp afferents. Tooth pulp afferents were labelled by applying wheat-germ agglutinin conjugated horseradish peroxidase to the rat right lower incisor, whereafter electron microscopic morphometric analysis with serial section and reconstruction of p-endings in the trigeminal oral nucleus was performed. The results obtained from 15 p-endings presynaptic to 11 labeled tooth pulp afferent terminals were as follows. P-endings contained pleomorphic vesicles and made symmetrical synaptic contacts with labeled terminals. The p-endings showed small synaptic release-related ultrastructural parameters: volume, $0.82{\pm}0.45{\mu}m^3$ ($mean{\pm}SD$); surface area, $4.50{\pm}1.76{\mu}m^2$; mitochondrial volume, $0.15{\pm}0.07{\mu}m^3$; total apposed surface area, $0.69{\pm}0.24{\mu}m^2$; active zone area, $0.10{\pm}0.04{\mu}m^2$; total vesicle number, $1045{\pm}668.86$; and vesicle density, $1677{\pm}684/{\mu}m^2$. The volume of the p-endings showed strong positive correlation with the following parameters: surface area (r=0.97, P<0.01), mitochondrial volume (r=0.56, P<0.05), and total vesicle number (r=0.73, P<0.05). However, the volume of p-endings did not positively correlate or was very weakly correlated with the apposed surface area (r=-0.12, P=0.675) and active zone area (r=0.46, P=0.084). These results show that some synaptic release-related ultrastructural parameters of p-endings on the tooth pulp afferent terminals follow the "size principle" of Pierce and Mendell (1993) in the trigeminal nucleus oralis, but other parameters do not. Our findings may demonstrate a characteristic feature of synaptic release associated with p-endings.

A Study on the Mechanism of Insulin Sensitivity to Glucose Transport System: Distribution of Subcellular Fractions and Cytochalasin B Binding Proteins (인슐린의 포도당 이동 촉진 기전에 관한 연구 -세포내부 미세구조와 Cytochalasin B 결합단백질의 분포-)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.331-344
    • /
    • 1990
  • What makes glucose transport function sensitive to insulin in one cell type such as adipocyte, and insensitive in another such as liver cells is unresolved question at this time. Recently it is known that insulin stimulates glucose transport in adipocytes largely by redistributing transporter from the storage pool that is included in a low density microsomal fraction to plasma membrane. Therefore, insulin sensitivity may depend upon the relative distribution of gluscose transporters between the plasma membrane and in an intracellular storage compartment. In hepatocytes, the subcellular distribution of glucose transporter is less well documented. It is thus possible that the apparent insensitivity of the hepatocyte system could be either due to lack of the constitutively maintained, intracellular storage pool of glucose transporter or lack of insulin-mediated transporter translocation mechanism in this cell. In this study, I examined if any intracellular glucose transporter pool exists in hepatocytes and this pool is affected by insulin. The results obtained summarized as followings: 1) Distribution of subcellular fractions of hepatocyte showed that there are $24.9{\pm}1.3%$ of plasma membrane, $36.9{\pm}1.7%$ of nucleus-mitochondria enriched fraction, $23.5{\pm}1.2%$ of lysosomal fraction, $9.6{\pm}1.0%$ of high density microsomal fraction and $4.9{\pm}0.5%$ of low density microsomal fraction. 2) In adipocyte, there were $29.9{\pm}2.6%$ of plasma membrane, $19.4{\pm}1.9%$ of nucleus-mitochondria enriched fraction, $26.7{\pm}1.8%$ of high density microsomal fraction and $23.9{\pm}2.1%$ of low density microsomal fraction. 3) Surface labelling of sodium borohydride revealed that plasma membrane contaminated to lysosomal fraction by $26.8{\pm}2.8%$, high density microsomal fraction by $8.3{\pm}1.3%$ and low density microsomal fraction by $1.7{\pm}0.4%$ respectively. 4) Cytochalasin B bound to all of subcellular fractions with a Kd of $1.0{\times}10^{-6}M$. 5) Photolabelling of cytochalasin B to subcellular fractions occurred on 45 K dalton protein band, a putative glucose transporter and D-glucose inhibited the photolabelling. 6) Insulin didn't affect on the distribution of subcellular fractions and translocation of intracellular glucose transporters of hepatocytes. 7) HEGT reconstituted into hepatocytes was largely associated with plasma membrane and very little was found in low density microsomal fraction which equals to the native glucose transporter distribution. Insulin didn't affect on the distribution of exogeneous glucose transporter in hepatocytes. From the above results it is concluded that insulin insensitivity of hepatocyte may due to lack of intracellular storage pool of glucose transporter and thus intracellular storage pool of glucose transporter is an essential feature of the insulin action.

  • PDF

Acute and Subacute Effect of Lead acetate on Enzyme Activities and Ultrastructure in Mouse Diencephalone (초산납이 생쥐 간뇌의 미세구조 및 Catecholamine 대사에 미치는 영향)

  • Lee, Jung-Hee;Yoo, Chang-Kyu;Choe, Rim-Soon
    • Applied Microscopy
    • /
    • v.18 no.2
    • /
    • pp.187-204
    • /
    • 1988
  • The present experiment was performed to investigate the acute and subacute effect of lead acetate on ultrastructural and biochemical changes in mouse diencephalon. In acute case, mouse were peritoneally injected with lead acetate at a dose of 0.26 mmole/kg body weight, and after treatment, mouse were sacrificed at time intervals of 12, 24, 48, and 96 hours. In subacute case, mouse were injected at doses of 0.07 mmoie/kg B. W. and 0.13 mmole/kg B.W. once at two days, and after treatment, mouse wee sacrificed at 1 week, 2 weeks, and 3 weeks. It was observed that after acute treatment, changes composed of increased monoamine oxidase activity, $Na^{+}-K^{+}$ ATPase activity, decreased $Mg^{2+}$-APTase activity, wrinkled myelin, swollen Golgi apparatus and more dense synaptic vesicle in nerve terminal. After subacute treatment, decreased monoamine oxidase activity, increased $Mg^{2+}$-ATPase, $Na^{+}-K^{+}$ ATPase, lose of myelin, uneven mitochondrial distribution, synaptic vesicular density and edema, but at a higher dose the effect was more severe. Therefore, lead acetate caused abnormal change of diencephalon, and at a subacute, it appears metal accumulative toxicity.

  • PDF

A Study of the Pericardial Cell on the Cabbage Butterfly, Pieris rapae L. (배추흰나비(Pieris rapae L.)의 위심세포(圍心細胞)에 관한 연구)

  • Kim, Chang-Whan;Kim, Woo-Kap;Lee, Keun-Ok
    • Applied Microscopy
    • /
    • v.19 no.1
    • /
    • pp.34-48
    • /
    • 1989
  • The oval shaped pericardial cells are clustered along the lateral sides of the heart and irregularly connected with the heart. The cells are bounded by a basement membrane. The basement membranes of the connected two peicardial cells are irregularly linked each other there-fore funnels are formed. The multiple invaginations of the cell membrane are observed and septate junctions develope at the part of enterance of the cell membrane. The coated pits are appeared in the inner side of the invaginated cell membrane. The coated vesicles, tubular and spherical shaped vesicle, Golgi complex containing high electron densed material in the cisternae and mitochondria are observed in the cytoplasm and lysosomes are remarkably well developed. The whirled membrane structures in the multiformed complex bounded by single membrane are linked with low electron densed granules and spherical shaped small granules having high electron density with $0.03{\mu}m$ in diameter are located between the whirled membrane in a row and gradually secretes the granules and then they produced the multilamellar body. The lysosomal regions of cytoplasm of pericardial cell are appeared negative reaction to the acid phosphatase and according to the results of the electrophoresis, lipoproteins having acid phosphatase activity are contained. The axon is contacted with the pericardial cells.

  • PDF

Germ Cell Development during Spermatogenesis and Taxonomic Values of Sperm Morphology in Septifer (Mytilisepta) virgatus (Bivalvia: Mytilidae)

  • Kim, Jin-Hee;Kim, Sung-Han
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.239-247
    • /
    • 2011
  • Spermatogenesis and taxonomic values of mature sperm morphology of in male Septifer (Mytilisepta) virgatus were investigated by transmission electron microscope observations. The morphologies of the sperm nucleus and the acrosome of this species are the cylinder shape and cone shape, respectively. Spermatozoa are approximately 45-50 ${\mu}m$ in length including a sperm nucleus (about 1.26 ${\mu}m$ long), an acrosome (about 0.99 ${\mu}m$ long), and tail flagellum (about 45-47 ${\mu}m$). Several electron-dense proacrosomal vesicles become later the definitive acrosomal vesicle by the fusion of several Golgi-derived vesicles. The acrosome of this species has two regions of differing electron density: there is a thin, outer electron-dense opaque region (part) at the anterior end, behind which is a thicker, more electron-lucent region (part). In genus Septifer in Mytilidae, an axial rod does not find and also a mid-central line hole does not appear in the sperm nucleus. However, in genus Mytilus in Mytilidae, in subclass Pteriomorphia, an axial rod and a mid-central line hole appeared in the sperm nucleus. These morphological differences of the acrosome and sperm nucleus between the genuses Septifer and Mytilus can be used for phylogenetic and taxonomic analyses as a taxonomic key or a significant tool. The number of mitochondria in the midpiece of the sperm of this species are five, as seen in subclass Pteriomorphia.

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.