Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.
In this work, the hydrogen production costs of the nuclear energy sources are estimated in the necessary input data on a Korean specific basis. G4-ECONS was appropriately modified to calculate the cost for hydrogen production of HTE process with Very High Temperature nuclear Reactor (VHTR) as a thermal energy source rather than the LUEC (Levelized Unit Electricity Cost). The general ground rules and assumptions follow G4-ECONS. Through a preliminary study of cost estimates, we wished to evaluate the economic potential for hydrogen produced from nuclear energy, and, in addition, to promptly estimate the hydrogen production costs for an updated input data for capital costs. The estimated costs presented in this paper show that hydrogen production by the VHTR could be competitive with current techniques of hydrogen production from fossil fuels if $CO_2$ capture and sequestration is required. Nuclear production of hydrogen would allow large-scale production of hydrogen at economic prices while avoiding the release of $CO_2$. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The major factors that would affect the cost of hydrogen were also discussed.
High-temperature steam electrolysis (HTSE) using solid oxide cell is a challenging method for highly efficient large-scale hydrogen production as a reversible process of solid oxide fuel cell (SOFC). The overall efficiency of the HTSE hydrogen and synthesis gas production system was analyzed thermo-electrochemically. A thermo-electrochemical model for the hydrogen and synthesis gas production system with solid oxide electrolysis cell (SOEC) and very high temperature gas-cooled reactor (VHTR) was established. Sensitivity analyses with regard to the system were performed to investigate the quantitative effects of key parameters on the overall efficiency of the production system. The overall efficiency with SOEC and VHTR was expected to reach a maximum of 58% for the hydrogen production system and to 62% for synthesis gas production system by improving electrical efficiency, steam utilization rate, waste heat recovery rate, electrolysis efficiency, and thermal efficiency. Therefore, overall efficiency of the synthesis production system has higher efficiency than that of the hydrogen production system.
미래에너지의 해법으로 원자력에너지를 이용한 물분해 수소생산시스템의 핵심기술을 개발하였다. 안전성을 보장할 수 있는 제4세대 원자로인 초고온가스로의 고열을 이용하여 황요오드 열화학적인 방법으로 물을 분해하여 수소를 생산하는 기술이다. 원자력수소생산 핵심기술은 초고온에서의 열을 공급하는 것을 모사하는 초고온 실험기술, 초고온가스로의 안전성을 모사하는 연구, 초고온가스로의 노심과 안전성을 해석할 수 있는 도구의 개발, 초고온가스로에 사용하는 연료제조기술, 물을 분해하여 열화학적인 방법으로 수소를 생산하는 기술로 구성된다. 원자력수소생산에 필요한 핵심기술을 개발하고 실험실 규모로 입증하였으며, 대규모 실용화를 위해서 선결되어할 미완성 기술을 제시하였다. 본 기술은 제4세대 원자로개발 국제공동연구로 수행한 기술로서 향후 미래의 원자로 기술이다.
In the block type VHTR core, there are inevitable gaps among core blocks for the installation and refueling of the fuel blocks. These gaps are called bypass gap and the bypass flow is defined as a coolant flows through the bypass gap. Distribution of core bypass flow varies according to the reactor operation since the graphite core blocks are deformed by the fast neutron irradiation and thermal expansion. Furthermore, the cross-flow through an interfacial gap between the stacked blocks causes flow mixing between the coolant holes and bypass gap, so that complicated flow distribution occurs in the core. Since the bypass flow affects core thermal margin and reactor efficiency, accurate prediction and evaluation of the core bypass flow are very important. In this regard, experimental and computational studies were carried out to evaluate the core bypass flow distribution. A multi-block experimental apparatus was constructed to measure flow and pressure distribution. Multi-block effect such as cross flow phenomenon was investigated in the experiment. The experimental data were used to validate a CFD model foranalysis of bypass flow characteristics in detail.
Very High Temperature gas cooler Reactor (VHTR) has been considered as one of the most promising nuclear reactor because of many advantages including high inherent safety to avoid environmental pollution, high thermal efficiency and the role of secondary energy source. The TRISO coated fuel particles used in VHTR are composed of 4 layers as OPyC, SiC, IPyC and buffer PyC. The significance of CVD-SiC coatings used in tri-isotropic(TRISO) nuclear coated fuel particles is to maintain the strength of the whole particle. Various methods have been proposed to evaluate the mechanical properties of CVD-SiC film at room temperature. However, few works have been attempted to characterize properties of CVD-SiC film at high temperature. In this study, micro tensile system was newly developed for mechanical characterization of SiC thin film at elevated temperature. Two kinds of CVD-SiC films were prepared for micro tensile test. SiC-A had [111]-preferred orientation, while SiC-B had [220]-preferred orientation. The free silicon was co-deposited in SiC-B coating layer. The fracture strength of two different CVD-SiC films was characterized up to $1000^{\circ}C$.The strength of SiC-B film decreased with temperature. This result can be explained by free silicon, observed in SiC-B along the columnar boundaries by TEM. The presence of free silicon causes strength degradation. Also, larger Weibull-modulus was measured. The new method can be used for thin film material at high temperature.
A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.
초고온가스로에서 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하기 위한 시스템이 원자력수소생산시스템이며, 공정열교환기는 초고온 열과 황-요오드 공정을 통해 수소를 생산하는 원자력수소생산시스템에서의 핵심 기기이다. 한국원자력연구원에서는 초고온가스로에 사용될 기기에 대한 성능시험을 위해 최대 작동 설계온도 $1000^{\circ}C$인 헬륨가스루프를 구축하고 있으며 공정열교환기를 설계하였다. 본 연구에서는 구축중인 헬륨가스루프에서 성능시험을 수행할 예정으로 설계된 공정열교환기에 대한 고온 구조건전성을 미리 평가하기 위한 작업의 일환으로 고온구조해석 모델링, 열해석 및 열팽창 해석을 수행한 결과를 정리한 것이다. 해석결과를 이용하여 설계된 공정열교환기의 구조건전성을 유지하기 위한 1 차 및 2 차 열매체의 유입/유출 파이프라인에서의 적절한 구속조건을 결정하였으며 이를 향후 제작될 공정열교환기 시제품의 성능시험 장치 설계에 반영할 것이다.
초고온가스로로부터 생성된 $950^{\circ}C$ 정도의 초고온 열을 이용하여 수소를 경제적이며 또한 대량으로 생산하려는 원자력수소생산시스템에서 중간열교환기는 원자로에서 생산된 초고온 열을 수소생산 공장으로 전달하는 핵심 기기중의 하나이다. 한국원자력연구원에서는 초고온가스로에 사용될 핵심 기기에 대한 성능시험을 위해 소형가스루프를 구축하였고 중간열교환기의 유력한 형태로 고려되고 있는 인쇄기판형 열교환기의 소형 시제품을 제작하였다. 본 연구는 인쇄기판형 열교환기 소형 시제품을 소형가스루프에서 시험하기 전에 루프 시험조건하에서 인쇄기판형 열교환기 소형 시제품의 고온 구조건전성을 미리 평가하기 위한 작업의 일환으로 수행한 결과, 즉 고온 구조해석 모델링, 거시적 열 해석 및 구조 해석 결과 등을 정리한 것이다. 해석 결과는 인쇄기판형 열교환기 소형 시제품 성능시험결과외 비교하고 향후 제작될 중형 시제품 설계/제작에 반영할 것이다.
본 논문에서는 국제적으로 개발 중인 초고온가스로와 연계하여 대량의 수소를 생산하기 위한 방안의 일환으로 국내에서 개발 중인 고온증기전기분해 시스템에 사용될 열교환기 재료의 고온증기 부식실험에 대해 소개하였다. 이를 위해 관련된 국내외 연구현황을 조사분석한 결과를 요약하여 소개하였으며 마지막으로 현재 수행중인 고온증기부식 연구의 실험조건 및 계획을 제시하였다. 실험 및 연구결과는 초고온가스로와 연계된 고온전기분해를 이용한 수소생산시스템의 개발에 활용될 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.