• Title/Summary/Keyword: vertical testing

Search Result 333, Processing Time 0.023 seconds

Analysis of Ultrasonic Scattering from Side-drilled Holes (원주형 기공에 대한 초음파 산란 해석)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.559-565
    • /
    • 2004
  • Two different methods were used for the scattering analysis of side-drilled holes(SDH). The scattering models include an explicit model based on the Kirchhoff approximation and the solution of the exact separation of variables. The far-field scattering amplitude was calculated and their time-domain results were compared for the case of shear vertical wave. The exact solution predicts the existence of the creeping wave. The Kirchhoff approximation agreed to the exact solution, except the case of the creeping wave. Two measurement models were introduced to predict the response from the SDHs for the case of immersion, pulse-echo testing. The received voltage was calculated for the case of the shear vertical waves with the incident angle of $45^{\circ}$ to the SDH with the diameter of 1mm, and compared with the experimental results.

Perforation threshold energy of carbon fiber composite laminates

  • Hwang, Shun-Fa;Li, Jia-Ching;Mao, Ching-Ping
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • Two carbon fiber composite laminates, $[0/90]_{2S}$ and $[0/+45/90/-45]_S$, were considered in this work to find out the perforation threshold energy to complete the perforation process and the corresponding maximum contact force. Explicit finite element commercial software, LS-DYNA, was used to predict these values. According to the simulation results, these two types of composite laminates were tested by using a vertical drop-weight testing machine. After testing, the damage condition of these specimens were observed and compared with the results from finite element analysis. The testing results indicate that the perforation threshold energy is 6 Joules for $[0/90]_{2S}$ and 7 Joules for $[0/+45/90/-45]_S$, which is in good agreement with the simulation results. Also, the maximum contact force at the case of perforation threshold energy is the lowest as compared to the maximum contact forces occurring at the impact energy that is larger or less than the perforation threshold energy.

Estimation of Compressive Strength of Reinforced Concrete Structure Using Impact Testing Method and Rebound Hardness Method

  • Hong, Seonguk;Kim, Seunghun;Lee, Yongtaeg;Jeong, Jaewon;Lee, Changyong;Park, Chanwoo
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.137-145
    • /
    • 2018
  • The nondestructive test is widely used in the field of diagnosis and maintenance to evaluate the degree of damaging of structures caused by aging, and the demand for this test method is expected to continue increasing. However, there is a lack of standards related to the nondestructive test, and South Korea is relying heavily on developed nations for original technologies related to diagnosis. It is an urgent task to establish a nondestructive test method appropriate for the circumstance of South Korea. The purpose of this study is to compare and analyze estimated error of compressive strength in single-story structures comprised of vertical and horizontal reinforced concrete members using the impact testing method and rebound hardness method, which are nondestructive test methods, and to review on-site applicability of these methods. Based on compressive strength of the structures estimated, overall mean error was 21.2% for the impact testing method and 15.6% for the rebound hardness method. The necessity of a reliable diagnostic method based on compound nondestructive test methods to increase accuracy of estimation was confirmed.

Perinatal outcome and possible vertical transmission of coronavirus disease 2019: experience from North India

  • Sharma, Ritu;Seth, Shikha;Sharma, Rakhee;Yadav, Sanju;Mishra, Pinky;Mukhopadhyay, Sujaya
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.5
    • /
    • pp.239-246
    • /
    • 2021
  • Background: The consequences of severe acute respiratory syndrome corona virus 2 on mother and fetus remain unknown due to a lack of robust evidence from prospective studies. Purpose: This study evaluated the effect of coronavirus disease 2019 (COVID-19) on neonatal outcomes and the scope of vertical transmission. Methods: This ambispective observational study enrolled pregnant women with COVID-19 in North India from April 1 to August 31, 2020 to evaluate neonatal outcomes and the risk of vertical transmission. Results: A total of 44 neonates born to 41 COVID-19-positive mothers were evaluated. Among them, 28 patients (68.3%) (2 sets of twins) were delivered within 7 days of testing positive for COVID-19, 23 patients (56%) (2 sets of twins) were delivered by cesarean section; 13 newborns (29.5%) had low birth weight; 7 (15.9%) were preterm; and 6 (13.6%) required neonatal intensive care unit admission, reflecting an increased incidence of cesarean delivery and low birth weight but zero neonatal mortality. Samples of cord blood, placental membrane, vaginal fluid, amniotic fluid, peritoneal fluid (in case of cesarean section), and breast milk for COVID-19 reverse transcription-polymerase chain reaction tested negative in 22 prospective delivery cases. Nasopharyngeal swabs of 2 newborns tested positive for COVID-19: one at 24 hours and the other on day 4 of life. In the former case, biological samples were not collected as the mother was asymptomatic and her COVID-19 report was available postdelivery; hence, the source of infection remained inconclusive. In the latter case, all samples tested negative, ruling out the possibility of vertical transmission. All neonates remained asymptomatic on follow-up. Conclusion: COVID-19 does not have direct adverse effects on the fetus per se. The possibility of vertical transmission is almost negligible, although results from larger trials are required to confirm our findings.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

KINKING DEFORMATION OF PVD UNDER CONSOLIDATION OF NATURAL CLAY LAYER

  • Aboshi, Hisao;Inoue, Toshiyuki;Yamada, Yoshimitsu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.349-356
    • /
    • 2003
  • Almost every material of PVD (Prefabricated Vertical Drain) has the fatal problem on the condition - the length must shorten with the settlement of the surrounding grounds - which all PVDs must satisfy. Kinking deformation by buckling of PVD due to consolidation settlement Is discussed in this paper. A new testing device to clarify the deformation of PVD under consolidation of surrounding clay was developed and the fiber drain and a PVD made of plastics were compared under the same condition of consolidation using natural clay specimens. The results are also shown in this paper.

  • PDF

A Study on the improvement of element division of hydrid integral method for analyzing of the offshore structures (해양구조물의 동요해석을 위한 Hybrid적분방정식법의 요소분할 개선에 관한 연구)

  • Lee, Sang-Yeob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.3-10
    • /
    • 1999
  • Recently, It is proceeding the project of offshore structures in the many contury. A hybrid boundary-integral method is developed for computing wave forces on floating bodies. In this method, using the cylindric boundary for deviding elements, it is convenient to analysis but is difficult to apply to the rectangular or slender bodies. Thus, in this paper, I propose the new method by using the fictitious vertical cylinder of arbitary cross-section and shows results of the numerical analysis for testing.

  • PDF

A Mechanism Design of the 3-axial Road Simulator Linkage (3축 로드 시뮬레이터 링크부의 메카니즘 설계)

  • 정상화;류신호;김종태;이규태;장완식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2003
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the link unit which is able to realize the 3 element forces such as vertical force, lateral force, and longitudinal force that are applied to the road simulator is designed. Also, the designed link is verified with kinematics and inverse-kinematics. From this results, the designed factor satisfied the maximum stroke so that it satisfied the requirements for 3-axial road simulator.

Nonlinear shear strength of pre-stressed concrete beams

  • Rahai, Alireza;Shokoohfar, A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.441-458
    • /
    • 2012
  • The shear strength is an important factor in the design of prestressed concrete beams. Therefore, researchers have utilized various methods to determine the shear strength of these elements for the design purposes. To evaluate some of the proposed theoretical methods, numerous models of post-tensioned beams with or without vertical prestressing are selected and analyzed using the finite element method and assuming nonlinear behavior for the materials. In this regard the validity of modeling is evaluated based on some tests results. In the second part of the study two beam specimens are built and tested and their load-deformation curve and cracking pattern are studied. The analytical results consist of compressive strut slope and mid span load deflection are compared with some experimental results, and the results of some codes' formulas. Finally comparing the results of nonlinear analysis with the experimental values, a new formula is proposed for determining strut slopes in prestressed concrete beams.

Analysis of Ultrasonic Scattering Fields by 2-D Boundary Element Method and Its Application (2차원 경계요소법에 의한 초음파 산란음장의 해석과 응용)

  • Jeong, Hyunjo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1439-1444
    • /
    • 2005
  • A two-dimensional boundary element method was used for the scattering analysis of side-drilled hole(SDH). The far-field scattering amplitude was calculated for shear vertical(SV) wave, and their frequency and time-domain results were presented. The time-domain scattering amplitude showed the directly reflected wave from the SDH leading edge as well as the creeping wave. In an immersion, pulse-echo testing, two measurement models were introduced to predict the response from SDHs. The 2-D boundary element scattering amplitude was converted to the 3-D amplitude to be used in the measurement model. The receiver voltage was calculated fer SV wave incidence at 45$^{\circ}C$ on the 1 m diameter SDH, and the result was compared with experiment.