• 제목/요약/키워드: vertical structure

검색결과 2,433건 처리시간 0.028초

호소에 있어서의 생산구조에 관한 연구 (Studies on the Productive Structure in some Lakes in Korea)

  • 엄규백
    • Journal of Plant Biology
    • /
    • 제14권1호
    • /
    • pp.15-23
    • /
    • 1971
  • The productivity of summer phytoplankton communities in Lake Hwajinpo, Lake Yongrang and Lake Changja were studied by measuring vertical variation of chlorophyll a amounts. The author also classified the lake types on the basis of the amount of chlorophyll in the lake water. And in Lake Changja, the seasonal changes of stratification of chlorophyll were studies. In Lake Hwajinpo, the productive structure of the phytoplankton community in summer was found to be L-shaped and of the mesotrophic type. In Lake Yongrang, the productive structure of the phytoplankton community in summer was alo L-shaped and of the mesotrophic type. And maximum chlorophyll layer was near the lake bottom below the compensation depth. In Lake Changja, the structure of phytoplankton community in summer was reversed L-shaped and of the eutrophic type, with the maximum chlorophyll layer just below the surface. The vertical distribution of chlorophyll amounts as a measure of the productive structure almost always formed a stratum distribution except in September and sometimes in May, in Lake Changja. In September homogeneous distribution was observed.

  • PDF

An improved electrode structure of the Patterned Vertical Alignment Liquid Crystal Cell for high optical property

  • Choi, Yong-Hyun;Son, Jung-Hee;Yang, Jin-Seok;Ji, Seung-Hoon;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.502-505
    • /
    • 2007
  • In this paper we propose a novel electrode structure for high transmittance in the Patterned Vertical Alignment (PVA) LC cell. Normally, the transmittance of PVA LC cell is depended on the shape of the electrode and cell gap. We studied the area decreasing the transmittance through the electrode structure for wide viewing angle and proposed new electrode design to change LC director configuration in the area. We use the 'TechWiz LCD' for calculation of the director configuration and optical characteristics. We show the comparison of the calculated optical transmittance between the conventional PVA mode and the proposed PVA mode. From the results, we confirm that the optical transmittance of the proposed structure of the PVA cell becomes higher.

  • PDF

Multi-stack Technique for a Compact and Wideband EBG Structure in High-Speed Multilayer Printed Circuit Boards

  • Kim, Myunghoi
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.903-910
    • /
    • 2016
  • We propose a novel multi-stack (MS) technique for a compact and wideband electromagnetic bandgap (EBG) structure in high-speed multilayer printed circuit boards. The proposed MS technique efficiently converts planar EBG arrays into a vertical structure, thus substantially miniaturizing the EBG area and reducing the distance between the noise source and the victim. A dispersion method is presented to examine the effects of the MS technique on the stopband characteristics. Enhanced features of the proposed MS-EBG structure were experimentally verified using test vehicles. It was experimentally demonstrated that the proposed MS-EBG structure efficiently suppresses the power/ground noise over a wideband frequency range with a shorter port-to-port spacing than the unit-cell length, thus overcoming a limitation of previous EBG structures.

수직3관절 로보트 매니풀레이터에 대하여 시변슬라이딩레짐을 사용한 가변구조 모델추종 적응제어의 응용 (An Application of Variable Structure Model Following Adaptive Control Using Time-Varying Sliding Regime to Robot Manipulator with Vertical 3 links)

  • 김중완;강대기;김병오;오현성;정희균
    • 한국정밀공학회지
    • /
    • 제11권6호
    • /
    • pp.158-167
    • /
    • 1994
  • The design concept of varaiable structure control is useful not only to stochasic systems but also to adaptive control systems. The Dynamic equation of vertical three linkage robot was derived. And it was simplyfied according to the scheme of control strategy. And we specify the form of model. Thereafter the error dynamic equation was derived between the real state of the plant and state of the model. Some simulations were performed to control robot manipulator applying the methodology of the variable structure model following adaptive control.

  • PDF

연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여 (Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1)

  • 박경호
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구 (The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building)

  • 최성필;최재필
    • 대한건축학회논문집:계획계
    • /
    • 제34권6호
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

Double Sided Deep Ridge 도파관 구조를 가지는 수직 방향성 결합기의 코어와 클래딩의 굴절율 차이가 소자의 특성에 미치는 영향 (Effect of refractive index difference between core and cladding on the characteristics of a vertical directional coupler using the double sided deep ridge waveguide structure)

  • 윤정현;정병민;김부균
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2004년도 제15회 정기총회 및 동계학술발표회
    • /
    • pp.300-301
    • /
    • 2004
  • Effect of refractive index difference between core and cladding on the characteristics of a vertical directional coupler using double sided deep ridge waveguide structure is investigated.

  • PDF

Calculation of Joule heating and temperature distribution generated in the KSTAR superconducting magnet structure

  • Seungyon Cho;Park, Chang-Ho;Sa, Jeong-Woo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.78-83
    • /
    • 2002
  • Since the KSTAR superconducting magnet structure should be maintained at a cryogenic temperature of about 4 K, even a small amount of heat might be a major cause of the temperature rise of the structure. The Joule heating by eddy currents induced in the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rise of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increased as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure, the maximum temperature was obtained from the PF fast discharging scenario. This means that the vertical disruption and PF fast discharging scenarios are the major scenarios for the design of TF and CS coil structures, respectively. For the reference scenario, the location of maximum temperature spot changes according to the transient current variation of each PF coil.

RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교 (Characteristics of Vertical Vibration Transfer according to RC Structure Systems)

  • 전호민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토 (The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures)

  • 정지승;신화철;김진구
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.