• Title/Summary/Keyword: vertical stress

Search Result 1,174, Processing Time 0.028 seconds

Flow Induced by the Uniform Motion of Top Plate over the Bottom Plate with Vertical Fin (수직 휜을 갖는 아래 평판 위에서 등속 운동을 하는 위 평판에 의한 유동)

  • Park, Jun-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.877-884
    • /
    • 2001
  • A theoretical analysis is conducted on the Stokes flow in a narrow channel. A vertical fin is mounted on the bottom plate and the flow is induced by uniformly sliding top plate. The governing harmonic equation was solved in the transformed ζ-plane, which is obtained by applying conformal mappings to the physical plane. By using well-known transformation technique, closed-form expressions for velocity and skin frictional stress on the top and bottom plates were obtained.

A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow (전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구)

  • Cha, Kyong-Ok;Kim, Bong-gag;Kim, Jea-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.

Stability analysis of deepwater compliant vertical access riser about parametric excitation

  • Lou, Min;Hu, Ping;Qi, Xiaoliang;Li, Hongwei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.688-698
    • /
    • 2019
  • If heave motion in the platform causes horizontal parametric vibration of a Compliant Vertical Access Riser (CVAR), the riser may become unstable. A combination of riser parameters lies in the unstable region aggravates vibrational damage to the riser. Change of axial tensile stress in the riser combined with its natural frequency and mode shape change results in mode coupling. In accordance with the state transition matrices of the riser in the coupled and uncoupled states, the stable and unstable regions were obtained by Floquet theory, and the vibration response under different conditions was obtained. The parametric excitation of the CVAR is shown to occur mainly in first-order unstable regions. Mode coupling may cause parametric excitation in the least stable regions. Damping reduces the extent of unstable regions to a certain extent.

Fluid-Structural Interaction Analysis of Vertical Wind Turbine Combined with Antenna (안테나 결합형 수직 풍력터빈의 유체 구조 연성 해석)

  • Kim, Seong-Hwan;Kim, Ick-Tae
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to develop a vertical wind turbine with antenna structure in microgird environment. Computational fluid dynamics (CFD) was used to calculate the basic aerodynamic performance. The pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition and the Fluid Structure Interaction (FSI) was applied. The stability of the wind turbine was confirmed by checking the deformation and internal stress of wind turbine by wind force.

The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions (임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석)

  • Jeung, Sin-Young;Kim, Chang-Hyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

The Maximum Shear Stress Distribution in a Stiffener attached to a Plate (평판(平板)에 붙은 Stiffener 속에서의 전단응력(剪斷應力)의 분포(分布))

  • Sahng-Jun,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 1966
  • The maximum shear stress distribution in a stiffening flat attached to a plat undergoing a single tensile force has been investigated by photoelastic method. In the experiments a photoelastic model, as shown in Fig. 1, has been studied in the fields of a polariscope, as shown in Fig. 2. Fig. 3 shows the isoclinics and Fig. 4 and 5 are stress trajectories of the principal stresses and maximum shear stresses, respectively. Fig. 6 is the isochromatics in light field. The maximum shear stress at each point in the stiffener were determined from the isochromatics in both of light field of light field and dark field. Then the maximum shear stresses were divided by the average shear stress in the model, to obtain the ratio ${\tau}max/{\tau}av$ at each point. Finaly the variations of the ratio ${\tau}max/{\tau}av$ along the horizontal and vertical lines in the stiffener have been plotted, as shown in Fig. 7 and 8. The conclusions reached in this investigation are as follows: (1) The shear stresses transmitted to the stiffener through the juncture are concentrated on the end portions. (2) The maximum shear stress at the ends of the stiffener reaches to about 4 times of average shear stress. (3) The irregularities in the stress distribution are restricted in the end portions of the stiffener.

  • PDF

Stress Analysis of Fill Dam by FEM (FEM에 의한 필댐의 응력해석(應力解析))

  • Kang, Yea Mook;Cho, Seong Seup;Yang, Hae Jin
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.1
    • /
    • pp.79-90
    • /
    • 1992
  • The embankment material of Andong Dam was the decomposed granite soil, and FEM analysis with settlement and stress characteristics were studied in this thesis. and also the results were as follows: 1. The vertical settlement of dam quite nearly coincides with the calculated one by FEM. A maximum value of the measured and the calculated is 40cm and 42cm, respectively, at the EL. 130m. 2. The measured settlement values of the central parts in elevation are nearly the same as those of the calculated, and the settlement values in order of magnitude are in core, filter, random and rock. 3. Horizontal deformation of max. 21cm in downstream is larger than that of max. 17cm in upstream, which is highly influenced by the water pressure of reservoir water level and the earth pressure of coffer dam in upstream. 4. Reverse arching effect of vertical stress in streamflow section are caused by the difference of stiffness, because stiffness is larger in core zone than in filter zone. 5. Load transfer ratio which is the ratio of principal stress of core zone and filter zone is 1.06, which clearly showes the reverse arching effect in vertical stress.

  • PDF

The Study on the Design and Numerical Analysis of Self-Supported Retaining Wall with Cement Treated Soil by Vertical Mixing Method(V-DCM) (연직교반혼합처리(V-DCM) 연속벽을 이용한 자립식 흙막이공법의 설계 및 해석에 관한 연구)

  • Byung-Il Kim;Kang-Han Hong;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.9-23
    • /
    • 2023
  • In this study, the design methods of self-supported retaining wall with cement treated soil constructed by vertical mixing method (trencher mixing method, V-DCM), which are using in domestic and foreign field, are investigated, and the characteristics of it are presented with comparing the results of numerical analysis with the drainage and construction conditions. The results indicated that the method 1 (total stress analysis) is the most aggressive, and method 2 (effective stress analysis) and method 3 are similar in the internal stress, and the stress and the horizontal displacement are effected on the soil type and drainage conditions in backfill of the wall. Also, in the case of the design combined with numerical analysis the method 1 can be applied, in that of the traditional design without the analysis the method 2 or the method 3 can be used. Finally, if the numerical analysis is only conduct, the tensile stress in excavation base and in boundary of the wall and the original ground have to be considered in the numerical analysis method.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Earthquake Response Analysis at Port Island during the 1995 Hyogoken-nanbu Earthquake(Japan) (일본 한신 대지진에 있어서의 포트 아일랜드의 지진응답해석)

  • 황성춘
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.477-484
    • /
    • 2000
  • Earthquake response analyses are conducted for the investigation of the ground shaking during the 1995 Hyogoken-nambu earthquake. Port Island a man made island with about 8{{{{ KAPPA m^2 }} area is chosen for this purpose Because earthquake measurement with vertical array was conducted there. Strain dependent characteristics of soil can be modeled well into Hardin-Drnevich Model. Four analyses are conducted : total stress analysis by equivalent linear method non-linear method. and two effective stress analyses. All analyses except equivalent linear analysis show fairy good agreement with observed record mainly because the non-linear behavior of Holocene clay layer has predominant effect on the behavior of fill, However detailed investigation show that effective stress analyses give much better prediction than total stress analyses.

  • PDF