• Title/Summary/Keyword: vertical shaft

Search Result 165, Processing Time 0.024 seconds

An Analysis on 3-Dimensional Temperature Distribution of Jet Vanes for a Thrust Vector Control (추력방향조종용 제트베인의 3차원 온도분포 해석)

  • Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.283-291
    • /
    • 2011
  • A computational investigation has been carried out to study the heat transfer characteristics of jet vane assembly used for the thrust vector control(TVC) of a vertical launch motor. In this study, the coefficients of convective heat transfer on the jet vane are calculated using the solutions of thermal boundary-layer equation and several semi-empirical equations. The calculation of 3-dimensional temperature distribution for the jet vane assembly was performed using the softwares called PATRAN and ABAQUS. The accuracy of the present numerical method is verified by comparing with the measured and calculated temperatures within jet vane shaft. The temporal variation of jet vane temperatures for three deflection angles(0o, 12.5o, 25o) was discussed.

  • PDF

Investigation on the Stage-Discharge Relation in Inclined Spiral Intake (나선식 종경사형 유입구 수위 유량 수위-관계 검토)

  • Rhee, Dong-Sop;Kim, Chang-Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1809-1812
    • /
    • 2008
  • 지하방수로는 도시의 지하에 대규모 수로 터널을 시공하여, 도시 지역에 발생한 집중 호우를 초기에 배제하여 제내지 침수 피해를 줄이는 목적으로 사용되는 대표적인 구조적 홍수 피해 경감 대책이다. 효과적으로 침수 피해를 줄일 수 있을 뿐만 아니라, 특히 지하에 설치되어 토지 수용에 대한 부담이 줄어들기 때문에 일본 등지에서 최근 주요 홍수 방어 대책으로 활용되고 있다. 지하방수로 유입부는 크게 접근수로, 유입구, 수직 갱도(vertical shaft)로 구분되며, 접근 수로를 통하여 유입된 흐름은 유입구를 통하여 가속된 후 수직 갱도로 유입되게 된다. 따라서 지하방수로의 배제 능력을 평가하기위해서는 유입구에서의 유량 및 흐름 특성을 정확히 평가하는 것이 매우 중요하다. 나선식 종경사형 유입구(inclined spiral intake)는 지하방수로 유입구 중 가장 일반적으로 사용되는 형식으로 나선식 유입구의 한 형태로 유입구의 외측 또는 중앙선을 따라서 일정한 경사를 주어 사류 유입 흐름을 유도함으로서 유량 배제 효율을 높인 형태이다. 나선식 종경사형 유입구도 일반적인 나선식 유입구와 마찬가지로 접근수로 수위를 측정하여 유입량을 예측할 수 있다. 본 연구에서는 수리 모형 실험을 통하여 나선식 종경사형 유입구에 대한 수위-유입량 관계를 검토하였다. 평탄한 입구를 가지는 안내벽이 있는 형식의 유입구 모형을 이용하여 수위-유입량 관계를 검토하였다.

  • PDF

A Study on Interference Phenomenon of a Machine Tool when 5 Axises Working with Virtual Machine Tool (가상공작기계를 이용한 5축 가공 시 공작기계의 간섭현상에 관한 연구)

  • Kim, Hae-Ji;Jang, Jeong-Hwan;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.16-23
    • /
    • 2005
  • This study is intended to find out the reason of interference phenomenon of a machine tool when it operates for 5-axises working. The researcher made a Virtual Machine which has same figures of the 5 axises machine tool and Virtual Manufacturing System which has both Software factors - controller and NC code data to manipulate the movement characteristics of the machine - and Hardware factors - fixtures, workpiece, tools, holders and so on. With these virtual tools, this study is designed to find out the relation between the movement and the interference or collision, and also intended to verify the simulation and work-processing. In this study, the researcher found out, in case of the vertical 5 axises type, that it has more chances to have interference between the fixture, the workpiece and the main spindle including the tool holder due to the tilting kinetics of the main spindle. In case of the horizontal 5 axises type, on the other hand, the researcher found out that it has more possibility to have the interference between the main spindle and the rotary shaft.

  • PDF

Experimental Study on the Laterally Loaded Behavior of Single Pole Foundation (강관주 철탑기초의 수평거동에 관한 실험적 연구)

  • Kim, Dae-Hong;Kim, Kyoung-Yul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1087-1094
    • /
    • 2008
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Five prototype field-tests (1/8 scale) have been conducted in order to determine the lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection (경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Motion characteristics along the shape of the activating body of a floating wave energy convertor

  • Kim, Sung-Soo;Lee, Su-Bong;Lee, Soon-Sup;Kang, Dong-Hoon;Lee, Jong-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.704-709
    • /
    • 2016
  • Wave energy generation systems can be divided into oscillating water chamber type, over topping device type and wave activating body type. The wave activating body type converts wave energy to kinetic energy, and the power generation amount increases as the motion of an activating body increases. In this paper, the wave energy convertor consists of a main body, which has an H-shape, and the activating body. These are connected by a bar-type bridge. By the incident wave, when the activating body moves with vertical motion this motion is consequently converted into rotational motion. The twisting moment and angular velocity at a shaft of convertor are calculated according to various conditions of the incident wave and the shape of the activating body. This can be used as a basic idea for determining the design of wave activating body type convertor.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Consideration of the Stage-Discharge Relation in Spiral Intake (나선식 유입구 수위-유량 관계 검토)

  • Rhee, Dong-Sop;Kim, Chang-Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.894-898
    • /
    • 2007
  • 지하방수로는 도시의 지하에 대규모 수로 터널을 시공하여, 도시 지역에 발생한 집중 호우를 초기에 배제하여 제내지 침수 피해를 줄이는 목적으로 사용되는 대표적인 구조적 홍수 피해 경감 대책이다. 효과적으로 침수피해를 줄일 수 있을 뿐만 아니라, 특히 지하에 설치되어 토지 수용에 대한 부담이 줄어들기 때문에 일본 등지에서 최근 주요 홍수 방어 대책으로 활용되고 있다. 지하방수로 유입부는 크게 접근수로, 유입구, 수직 갱도(vertical shaft)로 구분되며, 접근 수로를 통하여 유입된 흐름은 유입구를 통하여 가속된 후 수직 갱도로 유입되게 된다. 따라서 지하방수로의 배제 능력을 평가하기위해서는 유입구에서의 유량 및 흐름 특성을 정확히 평가하는 것이 매우 중요하다. 나선식 유입구(spiral intake)는 지하방수로 유입구 중 가장 일반적으로 사용되는 형식으로 일반적으로 접근수로 수위를 측정하여 유입량을 예측할 수 있다. 본 연구에서는 수리 모형 실험을 통하여 나선식 유입구에 대한 수위-유입량 관계를 검토하였다. 평탄한 입구를 가지는 안내벽이 있는 형식의 나선식 유입구 모형을 이용하여 수위-유입량 관계를 검토하였다. 또한 측정된 수위 및 유입량을 바탕으로 기존 연구자들이 제시한 안내벽이 없는 형식의 나선식 유입구에 대한 수위-유입량 관계와 비교 검토하였다. 검토 결과 안내벽이 있는 형식의 나선식 유입구는 안내벽이 없는 경우에 비하여 유량 배제 효율이 떨어지는 것으로 나타났다.

  • PDF

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

Numerical Analysis of Smoke Control for high-rise Building Considering with the Enthalpy Equation (Enthalpy Equation을 이용한 고층 건물의 제연해석)

  • Bae, Sung-Ryong;Ro, Kyoung-Chul;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.27-32
    • /
    • 2010
  • Recently, increases of population density due to the industrialization in the metropolitan cities has caused the high-density and integration of life environment. Then various high-rise buildings are constructed for accommodation. However, high-rise building fires can cause high casualties due to increases of smoke spread velocity through the vertical shaft. In this study, the new program based on the enthalpy conservation for analysis of energy transfer for smoke control system, CAU_ESCAP, was developed. CAU_ESCAP was validated by comparing with the result of ASCOS. The characteristic of smoke control was analysed by using CAU_ESCAP for high-rise building fires.