• Title/Summary/Keyword: vertical scalability

Search Result 7, Processing Time 0.028 seconds

Programming Characteristics on Three-Dimensional NAND Flash Structure Using Edge Fringing Field Effect

  • Yang, Hyung Jun;Song, Yun-Heub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • The three-dimensional (3-D) NAND flash structure with fully charge storage using edge fringing field effect is presented, and its programming characteristic is evaluated. We successfully confirmed that this structure using fringing field effect provides good program characteristics showing sufficient threshold voltage ($V_T$) margin by technology computer-aided design (TCAD) simulation. From the simulation results, we expect that program speed characteristics of proposed structure have competitive compared to other 3D NAND flash structure. Moreover, it is estimated that this structural feature using edge fringing field effect gives better design scalability compared to the conventional 3D NAND flash structures by scaling of the hole size for the vertical channel. As a result, the proposed structure is one of the candidates of Terabit 3D vertical NAND flash cell with lower bit cost and design scalability.

CDN Scalability Improvement using a Moderate Peer-assisted Method

  • Shi, Peichang;Wang, Huaimin;Yin, Hao;Ding, Bo;Wang, Tianzuo;Wang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.954-972
    • /
    • 2012
  • Content Delivery Networks (CDN) server loads that fluctuant necessitate CDN to improve its service scalability especially when the peak load exceeds its service capacity. The peer assisted scheme is widely used in improving CDN scalability. However, CDN operators do not want to lose profit by overusing it, which may lead to the CDN resource utilization reduced. Therefore, improving CDN scalability moderately and guarantying CDN resource utilization maximized is necessary. However, when and how to use the peer-assisted scheme to achieve such improvement remains a great challenge. In this paper, we propose a new method called Dynamic Moderate Peer-assisted Method (DMPM), which uses time series analysis to predict and decide when and how many server loads needs to offload. A novel peer-assisted mechanism based on the prediction designed, which can maximize the profit of the CDN operators without influencing scalability. Extensive evaluations based on an actual CDN load traces have shown the effectiveness of DMPM.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

A Scalable Authentication Framework for Fast Remote Roaming with Hierarchical Caching (계층적 캐슁을 이용해 로밍 확장성을 높인 인증 프레임워크)

  • Lee Heejin;Song Yu-Kyong;Rhee Myung Soo;Kim Chong-Kwon
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.5
    • /
    • pp.561-573
    • /
    • 2005
  • As the demand on ubiquitous communication increases, global roaming and vertical handover will be prevailing in the near future. Since this environment is accompanied by the frequent handovers at remote sites, a scalable and fast authentication becomes prerequisite for ubiquitous communication. In this paper, we suggest a framework for scalable and fast authentication, using hierarchical caching based on general trust relationship among domains. At the end, we show that the proposed scheme achieves reduced authentication delay and network overhead through an analytic method with fluid flow model.

Electrical Characteristics of Tunneling Field-effect Transistors using Vertical Tunneling Operation Based on AlGaSb/InGaAs

  • Kim, Bo Gyeong;Kwon, Ra Hee;Seo, Jae Hwa;Yoon, Young Jun;Jang, Young In;Cho, Min Su;Lee, Jung-Hee;Cho, Seongjae;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2324-2332
    • /
    • 2017
  • This paper presents the electrical performances of novel AlGaSb/InGaAs heterojunction-based vertical-tunneling field-effect transistor (VTFET). The device performance was investigated in views of the on-state current ($I_{on}$), drain-induced barrier thinning (DIBT), and subthreshold swing (SS) as the gate length ($L_G$) was scaled down. The proposed TFET with a $L_G$ of 5 nm operated with an $I_{on}$ of $1.3mA/{\mu}m$, a DIBT of 40 mV/V, and an SS of 23 mV/dec at a drain voltage ($V_{DS}$) of 0.23 V. The proposed TFET provided approximately 25 times lower DIBT and 12 times smaller SS compared with the conventional $L_G$ of 5 nm TFET. The AlGaSb/InGaAs VTFET showed extremely high scalability and strong immunity against short-channel effects.

Real-Time Search System using Distributed Cache (분산 캐시를 적용한 실시간 검색 시스템)

  • Ren, Jian-Ji;Lee, Jae-Kee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.472-476
    • /
    • 2010
  • Nowadays, as the indices of the major search engines grow to a tremendous proportion, vertical search services can help customers to find what they need. Real time search is valuable because it lets you know what's happening right now on any given topic. In this paper, we designed a new architecture to implement a high performance real time search system. Based on the real time search's characters, we divided the whole system to two parts which are collection system and search system. The evaluation results showed that our design has the potential to provide the real time search transparent scalability while maintaining the replication overhead costs in check.

SDN-COR: An Efficient Network Coding Opportunistic Routing Method for Software-Defined Wireless Sensor Networks

  • Yifan Hu;Xiqiang Hou;Fuqiang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1795-1816
    • /
    • 2024
  • A Software-Defined Wireless Sensor Networks (SDWSNs) architecture is firstly proposed to address the issues of inflexible architecture strategies and low scalability of traditional WSNs in this article. The SDWSNs architecture involves the design of a software-defined sensor network model and a customized controller architecture, along with an analysis of the functionalities of each management module within the controller architecture. Secondly, to tackle limited energy problem of sensor nodes, a network coding opportunistic routing method (SDN-COR) is presented based on SDWSNs. This method incorporates considerations of coding opportunities, vertical distance, and remaining energy of nodes to design a metric for encoding opportunistic routing. By combining opportunistic forwarding mechanisms, candidate forwarding sets are selected and sorted based on priority to prioritize data transmission by higher-priority nodes. Simulation results indicate that, comparing with conventional methods, this approach achieves reduction in energy consumption by an average of 21.5%, improves network throughput by 24%, and extends network lifetime by 20%.