• 제목/요약/키워드: vertical profiles of trace gases

검색결과 3건 처리시간 0.018초

한반도 상공의 ADEOS/IMG 관측 자료와 존데 자료의 비교 분석 (Intercomparisons of ADEOS/IMG Measurements with the Sonde Observations over Korea)

  • 조하만;김주공;오성남
    • 대한원격탐사학회지
    • /
    • 제15권3호
    • /
    • pp.253-266
    • /
    • 1999
  • ADEOS/IMG로 관측한 온도, 수증기, 오존의 분포를 1997년 (a)1월 10일, (b)1월 28일, (c)4월 2일, (d)6월 19일에 대하여 오산과 포항의 존데 관측 자료와 비교하였다. 전반적으로 오산의 자료와 비교한 (b)와 (d)의 경우는 대체로 존데 자료에 근접하였지만 포항의 자료와 비교한 (a)과 (c)의 경우는 상당한 차이를 보였다. 예를 들면 (b)와 (d)의 경우에 온도에 대한 RMSE 와 편의 분석 결과는 700~300 hPa 에서는 약 1~4 K, 그 이상의 고도에서는 4~5 K 이상의 편의를 나타내는데, 이것은 존데에 의한 관측 자료의 신뢰성 수준에 대한 논의도 함께 이루어져야 할 것으로 사료된다. 오존 분포에 대하여 동일한 분석을 시행한 레벨 2 5_6_4_4 버전의 결과는 50~60 hPa 이상의 상층을 제외하고는 그 차이가 0.3 ppmv 이하로 나타났다. 1997년 6월 19일에 한반도 상공의 5개 지점에서 관측한 IMG 자료중 레벨 2 5_6_4_4 버전의 결과는 온도, $H_2O$, $O_3$, CO의 연직 분포와는 달리 $CO_2$, $N_2$O, CH$_4$, HNO$_3$의 연직 분포는 관측지점이 달라짐에 따라 최대 농도가 나타나는 고도를 중심으로 그 차이가 크게 나타났다.

인버스 모델링 방법을 통해 추정된 대기 중 이산화탄소 농도와 항공 관측 자료 비교 (A Comparison of the Atmospheric CO2 Concentrations Obtained by an Inverse Modeling System and Passenger Aircraft Based Measurement)

  • 김현정;김현미;김진웅;조천호
    • 대기
    • /
    • 제26권3호
    • /
    • pp.387-400
    • /
    • 2016
  • In this study, the atmospheric $CO_2$ concentrations estimated by CT2013B, a recent version of CarbonTracker, are compared with $CO_2$ measurements from the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project during 2010-2011. CarbonTracker is an inversion system that estimates surface $CO_2$ fluxes using atmospheric $CO_2$ concentrations. Overall, the model results represented the atmospheric $CO_2$ concentrations well with a slight overestimation compared to observations. In the case of horizontal distribution, variations in the model and observation difference were large in northern Eurasia because most of the model and data mismatch were located in the stratosphere where the model could not represent $CO_2$ variations well enough due to low model resolution at high altitude and existing phase shift from the troposphere. In addition, the model and observation difference became larger in boreal summer. Despite relatively large differences at high latitudes and in boreal summer, overall, the modeled $CO_2$ concentrations fitted well to observations. Vertical profiles of modeled and observed $CO_2$ concentrations showed that the model overestimates the observations at all altitudes, showing nearly constant differences, which implies that the surface $CO_2$ concentration is transported well vertically in the transport model. At Narita, overall differences were small, although the correlation between modeled and observed $CO_2$ concentrations decreased at higher altitude, showing relatively large differences above 225 hPa. The vertical profiles at Moscow and Delhi located on land and at Hawaii on the ocean showed that the model is less accurate on land than on the ocean due to various effects (e.g., biospheric effect) on land compared to the homogeneous ocean surface.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권3호
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.