• Title/Summary/Keyword: vertical loading

Search Result 788, Processing Time 0.026 seconds

Evaluation of Bearing Capacities of Large Size Non-welded Composite Piles by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 대구경 무용접 복합말뚝의 지지거동 분석)

  • Park, Jae-Hyun;Kim, Sung-Ryul;Le, Chi-Hung;Chung, Moon-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.35-41
    • /
    • 2011
  • Recently, as large structures, which should support large design loads have been constructed, the study on the large diameter composite pile becomes necessary. The large diameter composite pile has the diameter over 700mm and consists of two parts of the upper steel pipe pile and the lower PHC pile by a mechanical joint. In this research, to analyze the bearing capacity and the material strength of the composite pile, three dimensional numerical analyses were performed. First, the numerical modeling method was verified by comparing the calculated load-movement curves of the pile with those of the field pile load tests. Then, a total of twelve analyses were performed by varying pile diameter and loading direction for three pile types of PHC, steel pipe and composite piles. The results showed that the vertical and the horizontal load-movement curves of the composite pile were identical with those of the steel pipe pile and the horizontal material strength of the composite pile was 60-80% larger than that of the PHC pile.

Structural Behavior of Circular Tube Column Bases under the Axial Load (축압축력을 받는 노출형 원형강관 주각의 거동)

  • Lee, Tae Kyu;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.471-478
    • /
    • 2004
  • The object of this study is to experimentally investigate the structural behavior of circular tube column bases under axial loads and to ascertain the test results using elastic numerical analysis. A literature survey was conducted on the AISC design code and a few design formulae. Tests were axially conducted under compressive loads. The thickness of the base plate was the main parameter of the specimens. Nine base plate specimens were used, with thicknesses ranging from 9 millimeters to 35 millimeters. The relationship of the load and the vertical displacement of base plates and the relationship of the load and the strain of the base plates were tested. Ansys version 6.1 was used for the elastic numerical analysis, to ascertain the test results. he test results and the elastic numerical analysis results will be used to suggest design formulae for inelastic numerical analyses that will be conducted later on.

A Study on Variation of Ultimate Pullout Resistance and Failure Behavior for Vertical Plate Anchors in Sands (앵커의 극한 지지력 변화와 파괴 거동에 관한 연구)

  • 장병욱;황명수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.4
    • /
    • pp.71-80
    • /
    • 1990
  • Model tests for the ultimate pullout resistance of anchorages and investigation of failure behaviors in cohesionless soil have been conducted. The factors affecting the anchorage are mostly the geometry of the system, and soil properties of sands. The main conclusions of the experimental work were as follows. 1. The load - displacement relationship can be a form of parabolic curve for all plates. 2. The change in ultimate pullout resistance of anchor is mostly affected by embedment ratio and size of anchor, and influenced to a lesser degree by its shape. 3. Critical embedment ratio which is defined as the failure mode changes from shallow to deep mode is increased with increasing height of anchor. 4. For a constant anchor height, as the width of anchor increases the ultimate pullout resistance also increases. However, considering the efficiency of anchor for unit area, width of anchor does not appear to have any sigrnificant contribution on increasing anchor city. 5. Anchor capacity has a linear relation to sand density for any given section and the rate of change increases as the section increases. Critical depth determining the failure patterns of anchor is decreased with a decrease of sand density. 6. With increasing inclination angle, size of anchor, and decreasing embedment ratio, the ultimate pullout resistance of anchor under inclined loading is significantly decreased. 7. The ultimate pullout resistance of double anchor, a method of improving single of anchor capacity, is influenced by the center - to - center spacing adjacent anchors. It is also found that tandem and parallel anchor rigging arrangements decrease the anchor system capacity to less than twice the single anchor capacity due to anchor interference.

  • PDF

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.

Effect of soil pile structure interaction on dynamic characteristics of jacket type offshore platforms

  • Asgarian, Behrouz;Shokrgozar, Hamed Rahman;Shahcheraghi, Davoud;Ghasemzadeh, Hasan
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.381-395
    • /
    • 2012
  • Dynamic response of Pile Supported Structures is highly depended on Soil Pile Structure Interaction. In this paper, by comparison of experimental and numerical dynamic responses of a prototype jacket offshore platform for both hinge based and pile supported boundary conditions, effect of soil-pile-structure interaction on dynamic characteristics of this platform is studied. Jacket and deck of a prototype platform is installed on a hinge-based case first and then platform is installed on eight skirt piles embedded on continuum monolayer sand. Dynamic characteristics of platform in term of natural frequencies, mode shapes and modal damping are compared for both cases. Effects of adding and removing vertical bracing members in top bay of jacket on dynamic characteristics of platform for both boundary conditions are also studied. Numerical simulation of responses for the studied platform is also performed for both mentioned cases using capability of ABAQUS and SACS software. The 3D model using ABAQUS software is created using solid elements for soil and beam elements for jacket, deck and pile members. Mohr-Coulomb failure criterion and pile-soil interface element are used for considering nonlinear pile soil structure interaction. Simplified modeling of soil-pile-structure interaction effect is also studied using SACS software. It is observed that dynamic characteristics of the system changes significantly due to soil-pile-structure interaction. Meanwhile, both of complex and simplified (ABAQUS and SACS, respectively) models can predict this effect accurately for such platforms subjected to dynamic loading in small range of deformation.

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

Pressure-settlement behavior of square and rectangular skirted footings resting on sand

  • Khatri, Vishwas Nandkishor;Debbarma, S.P.;Dutta, Rakesh Kumar;Mohanty, Bijayananda
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.689-705
    • /
    • 2017
  • The present study deals with the Pressure-settlement behavior of square and rectangular skirted footing resting on sand and subjected to a vertical load through a laboratory experimental study. A series of load tests were conducted in the model test tank to evaluate the improvement in pressure-settlement behavior and bearing capacity of square and rectangular model footings with and without structural skirt. The footing of width 5 cm and 6 cm and length/width ratio of 1 and 2 was used. The relative density of sand was maintained at 30%, 50%, 70%, and 87% respectively. The depth of skirt was varied from 0.25 B to 1.0 B. All the tests were carried out using a strain controlled loading frame of 50 kN capacity. The strain rate for all test was kept 0.24 mm/min. The results of present study reveal that, the use of structural skirt improves the bearing capacity of footing significantly. The improvement in bearing capacity was observed almost linearly proportional to the depth of skirt. The improvement in bearing capacity of skirted footings over footing without skirt was observed in the range of 33.3% to 68.5%, 68.9% to 127% and 146.7% to 262% for a skirt depth of 0.25 B, 0.50 B and 1.0 B respectively. The skirted footings were found more effective for sand at relative density of 30% and 50% than at relative density of 70% and 87%. The bearing capacity was found to increase linearly with footing width for footings with and without skirts. This observation was found to be consistent for footings with different skirt depths and for relative density of sand i.e., 30%, 50%, 70%, and 87%. The obtained results from the study for footing with and without skirts were comparable with available solutions from literature.

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

Failure Load Prediction of Tunnel Support using DOE and Optimization Algorithm (실험계획법과 최적화알고리듬을 이용한 터널지보의 파손하중 예측)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1480-1487
    • /
    • 2012
  • Recently, the safety of the coal-mining tunnels has been improved greatly, but accidents occur continually. Most tunnel support failures occur because the fish plate part that connects the I-beams is unable to withstand ground pressure. In the case of XX coal mine, the arch part of tunnel support bends to the upper direction. In such a case, excessive horizontal load as well as vertical load acts on the tunnel support. Horizontal load is caused by the sudden loosing of underground rock mass or the leakage of underground water, so it is fairly complex to predict horizontal loading on a tunnel support. To predict the horizontal load on this component is defined as the problem that determines the horizontal load conditions in wedges of tunnel support. This is an optimization problem in which maximum bending stress and horizontal load are considered by an objective function and design variables, respectively. Therefore, in this study, design of experiments and optimization algorithm were applied to identify the horizontal load in tunnel support.

Characteristics of Physical Properties of Rocks and Their Mutual Relations (암석의 종류와 방향에 따른 물리적 특성과 상호관계)

  • 원연호;강추원;김종인;박현식
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.