• 제목/요약/키워드: vertical load ratio

검색결과 256건 처리시간 0.025초

집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 대한 실험적 연구 (An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads)

  • 송우석;이진섭;양창현;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.273-278
    • /
    • 1994
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as shear span ratio, and the horizontal and vertical web reinforcements. A total of 27 specimens has been tested at the laboratory. In the tests all specimens have failed in shear causing inclined cracks from the load application points to the supports. The load bearing capacities have changed significantly depending on the shear span ratio. The effects of the vertical and horizontal reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed.

  • PDF

Horizontal pullout capacity of a group of two vertical plate anchors in clay

  • Bhattacharya, Paramita;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • 제5권4호
    • /
    • pp.299-312
    • /
    • 2013
  • The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load ($P_{uT}$) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

탄소성 모델에 의한 포물선 아치의 극한 내하력 평가 (The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model)

  • 조진구;박근수
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

Assessment of vertical wind loads on lattice framework with application to thunderstorm winds

  • Mara, T.G.;Galsworthy, J.K.;Savory, E.
    • Wind and Structures
    • /
    • 제13권5호
    • /
    • pp.413-431
    • /
    • 2010
  • The focus of this article is on the assessment of vertical wind vector components and their aerodynamic impact on lattice framework, specifically two distinct sections of a guyed transmission tower. Thunderstorm winds, notably very localized events such as convective downdrafts (including downbursts) and tornadoes, result in a different load on a tower's structural system in terms of magnitude and spatial distribution when compared to horizontal synoptic winds. Findings of previous model-scale experiments are outlined and their results considered for the development of a testing rig that allows for rotation about multiple body axes through a series of wind tunnel tests. Experimental results for the wind loads on two unique experimental models are presented and the difference in behaviour discussed. For a model cross arm with a solidity ratio of approximately 30%, the drag load was increased by 14% when at a pitch angle of $20^{\circ}$. Although the effects of rotation about the vertical body axis, or the traditional 'angle of attack', are recognized by design codes as being significant, provisions for vertical winds are absent from each set of wind loading specifications examined. The inclusion of a factor to relate winds with a vertical component to the horizontal speed is evaluated as a vertical wind factor applicable to load calculations. Member complexity and asymmetric geometry often complicate the use of lattice wind loading provisions, which is a challenge that extends to future studies and codification. Nevertheless, the present work is intended to establish a basis for such studies.

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

Effects of Vertical Alignment of Leg on the Knee Trajectory and Pedal Force during Pedaling

  • Kim, Daehyeok;Seo, Jeongwoo;Yang, Seungtae;Kang, DongWon;Choi, Jinseung;Kim, Jinhyun;Tack, Gyerae
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.303-308
    • /
    • 2016
  • Objective: This study evaluated the vertical and horizontal forces in the frontal plane acting on a pedal due to the vertical alignment of the lower limbs. Method: Seven male subjects (age: $25.3{\pm} 0.8years$, height: $175.4{\pm}4.7cm$, weight: $74.7{\pm}14.2kg$, foot size: $262.9{\pm}7.6mm$) participated in two 2-minute cycle pedaling tests, with the same load and cadence (60 revolutions per minute) across all subjects. The subject's saddle height was determined by the height when the knee was at $25^{\circ}$ flexion when the pedal crank was at the 6 o'clock position (knee angle method). The horizontal force acting on the pedal, vertical force acting on the pedal in the frontal plane, ratio of the two forces, and knee range of motion in the frontal plane were calculated for four pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, phase 4: $210{\sim}330^{\circ}$) and the complete pedaling cycle. Results: The range of motion of the knee in the frontal plane was decreased, and the ratio of vertical force to horizontal force and overall pedal force in the complete cycle were increased after vertical alignment. Conclusion: The ratio of vertical force to horizontal force in the frontal plane may be used as an injury prevention index of the lower limb.

연약지반에 설치된 소일시멘트말뚝의 거동 (Behaviors of Soil-cement Piles in Soft Ground)

  • Kim, Young-Uk;Kim, Byoung-Il;Xiaohong Bai
    • 한국지반공학회논문집
    • /
    • 제19권3호
    • /
    • pp.45-51
    • /
    • 2003
  • 복합기초의 한 형식인 소일시멘트 말뚝의 거동 특성을 컴퓨터 해석을 통하여 연구하였다. 연직하중을 받는 소일시멘트말뚝의 거동 특성을 ABAQUS라는 상용 프로그램을 사용하여 조사하였으며 해석조건은 지반물성치, 말뚝의 길이, 치환율, 강성비, 하중 조건 등을 달리하여 실시하였다. 해석 결과는 하중의 전이 및 침하특성 뿐만 아니라 효과적인 말뚝길이와 말뚝 및 지반의 하중 분배에 관하여서도 유용하게 쓰일 수 있음이 판명되었다. 또한 복합기초를 설계할 때 강성비, 치환율이 설계에 가장 큰 영향을 미치는 인자로 나타났다.

축소모형 철근콘크리트 기둥에서 철근의 노출길이와 수직하중에 따른 발파공수와의 상관성 분석 (Analysis of Correlativity with the Number of Blasting Holes Due to Exposed Length of Steel Bars and Vertical Load on Scaled Reinforced Concrete Columns)

  • 박훈;유지완;이희광;송정언;김승곤
    • 화약ㆍ발파
    • /
    • 제25권2호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 연구에서는 1/5 축소모형 철근콘크리트 기둥을 이용하여 철근의 노출길이 및 수직하중과 발파공수와의 관계에 대해 연구하였다. 축소모형 철근콘크리트 기둥에 수직하중을 재하하여 철근의 노출 길이와 발파공수와의 관계를 비교하였다. 또한 발파된 축소모형 기둥의 무게와 철근이 노출된 축소모형 기둥의 무게를 발파공수와 비교하였다. 축소모형 철근콘크리트 기둥에 대한 시험결과로부터 철근의 노출길이 및 수직하중을 바탕으로 축소모형 철근콘크리트 기둥의 발파공수를 산정할 수 있으며, 이를 축소모형 구조물에 적용할 수 있음을 확인하였다.