• Title/Summary/Keyword: vertical drain method

Search Result 113, Processing Time 0.034 seconds

Numerical Analysis of Soil Vapour Extraction Remediation System using Prefabricated Vertical Drain (토목섬유 연직배수재를 활용한 토양증기추출복원시스템의 수치해석)

  • Shin, Eun-Chul;Park, Jeong-Jun;Lee, Kyu-Woong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.1-8
    • /
    • 2008
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. However, soil vapor extraction becomes ineffective in soils with low gas permeability, for example soils with air permeabilities less than 1 Darcy. The aim of this study is to investigate numerically the performance of a prefabricated vertical drain (PVD) as a SVE well, and the pattern of the induced air flow. A validated numerical model for a single PVD extraction well is developed based on the result of a well-designed laboratory model test. The validity of the simple analytical approach to determine air permeability based on the results of model tests is also discussed.

  • PDF

Evaluation of Discharge Capacity for Gravel mat due to Geosynthetic Using Calibration Chamber Test (모형실험을 통한 토목섬유 적용에 따른 쇄석배수층 통수능 평가)

  • Kim, Jae-Hong;Im, Eun-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 2014
  • To create a large-scale complex, it is often the case to perform ground improvement by using vertical drain method after the reclamation of coastal soft ground, for construction period shortening and stable site renovation. During this process, the pore water migrates to the horizontal drainage layer of the ground surface through the vertical drain installed in the soft ground and discharged out to the open. In the past sand was used as the material for the horizontal drainage layer in numerous cases, however recently, due to material shortage and high pricing, the use of crushed stones has increased. To prevent mixing of the materials between the horizontal drainage layer and the upper landfill, geosynthetics (PPMat) are installed. However, the use of geosynthetics results in high additional cost for material purchase and installation, therefore it is necessary to examine the validity of the installation itself. In this study, to verify the necessity, model tests were performed. Results from the model tests indicate that the drainage ability of the horizontal drainage layer is barely affected by the application of geosynthetics.

Experimental Study on Development for Separation and Reinforcement Geotextiles with Horizontal Wicking Drain Property (수평방향의 위킹 배수 특성을 지닌 분리·보강용 지오텍스타일 개발을 위한 실험적 연구)

  • Kim, Hong-Kwan;Ahn, Min-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.215-224
    • /
    • 2019
  • According to the recent civil engineering construction work site which is a complex process, development of multi-functional geotextiles is required. In this study, the characteristics of five different modified cross-section fiber yarns for the selection of wicking yarns were analyzed and yarns that can achieve target properties were selected. Experimental prototype geotextiles suitable for horizontal wicking drain property and reinforcement was developed and its tensile strength, 2% secant modulus, vertical water permeability, AOS, friction characteristics by the direct shear method, and vertical/horizontal wicking test were analyzed. These tests are conducted to verify the performance of the geotextiles with horizontal wick drain property, separation and reinforcement developed in this study. As a results of the indoor soil box test, it was confirmed that the geotextiles using the wicking yarn sufficiently exhibited the function of discharging excess pore water in the horizontal direction.

Non-linear Finite Strain Consolidation of Ultra-soft Soil Formation Considering Radial Drainage (방사방향 배수를 고려한 초연약 지반의 비선형 유한변형 자중압밀 거동 분석)

  • An, Yong-Hoon;Kwak, Tae-Hoon;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Eun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.17-28
    • /
    • 2010
  • Vertical drains are commonly used to accelerate the consolidation process of soft soils, such as dredged materials, because they additionally provide a radial drainage path in a deep soil deposit. In practice, vertical drains are commonly installed in the process of self-weight consolidation of a dredged soil deposit. The absence of an appropriate analysis tool for this situation makes it substantially difficult to estimate self-weight consolidation behavior considering both vertical and radial drainage. In this paper, a new method has been proposed to take into account both vertical and radial drainage conditions during nonlinear finite strain self-weight consolidation of dredged soil deposits. For 1-D nonlinear finite strain consolidation in the vertical direction, the Morris (2002) theory and the PSDDF analysis are adopted, respectively. On the other hand, to consider the radial drainage, Barron's vertical drain theory (1948) is used. The overall average degree of self-weight consolidation of the dredged soil is estimated using the Carillo formula (1942), in which both vertical and radial drainage are assembled together. A series of large-scale self-weight consolidation experiments being equipped with a vertical drain have been carried out to verify the analysis method proposed in this paper. The results of the new analysis method were generally in agreement with those of the experiments.

Settlement Analysis for Improvement Effect of Soft Ground Method in Incheon Cheongna Site (인천 청라지역의 연약지반 개량공법에 따른 지반개량효과 및 침하분석)

  • Kong, Jinyoung;Kim, Heungnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.19-26
    • /
    • 2012
  • In this study, characteristics of consolidation settlement of soft grounds adapting preloading method and vertical drain method were compared. A real measurement settlement is compared with predicted one by the future settlement prediction method like the Asaoka's method, the Hyperbolic method and the Hoshino method. A accuracy of predicted future settlement by the Asaoka's method is relatively higher than the Hyperbolic method or the Hoshino method generally. But in the area conducted with the vertical drain method, settlement prediction accuracy of three methods is similar unlike popular beliefs; Asaoka's is the better method for prediction than others. The study area is also confirmed by investigation of the drainage system after applying the change through the N values, soil physical and mechanical properties were investigated, and physical properties are improved.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

Consolidation Analysis for PVD Installed Soft Ground Using a Modified Theoretical Solution (변형된 이론해를 이용한 연직배수재 설치 지반의 압밀해석)

  • Hong, Sung-Jin;Kim, Dong-Hee;Kim, Yun-Tae;Kim, Hyung-Sub;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.41-53
    • /
    • 2012
  • As the permeability of soil adjacent to the vertical drain has a decisive effect on the rate of consolidation, the permeability of smear zone governs the rate of radial consolidation of PVD installed soft ground. In this study, a method was suggested to analyze the radial consolidation, based on consolidation characteristics of remolded clay, and was used to evaluate the consolidation of soft clay layer in Busan Newport. The suggested method provides more reliable consolidation behaviors than the conventional approach, which is based on the consolidation characteristics of undisturbed clay. The suggested method is also observed to be relatively insensitive to the uncertainty of $k_h/k_s$. The comparison between the analysis and field measurement revealed that the suggested method provided a reliable prediction on the rate of consolidation of PVD installed Busan new port clay and that an appropriate extent of smear zone was evaluated as about $3d_w$ by back analysis.

Design of Vertical Drain in Consideration of Smear Effect and Well Resistance (교란효과와 배수저항을 고려한 연직 배수재 설계)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.115-123
    • /
    • 2000
  • This study compared the degree of consolidation by hyperbolic, curve fitting , Asaoka's and methods using values measured with a theoretical curve in consideration of smear effect and well resistance. The degree of consolidation by the Hyperboilc method was underestimated than the degree of consolidation by Curve fitting. Asaoka's , and Monden's methods. The typical range of the coefficient of horizontal consolidation was Ch=(2-3)Cv in the case considering smear effect and well resistance, and Ch =(0.5-2.1) Cv in the case disregarding smear effect and well resistance. The degree of consolidation obtained by ground settlement monitoring was nearly the same value when the coefficient of smear zone permeability by back analysis was shown to be half that of in-situ and the diameter of the smear zone was shown to be double that of mandrel. By increasing the diameter reduction ratio of the drain, the time of consolidation was delayed. The effect of well resistance showed that the case of a small coefficient of permeability was much more than in the case of a large coefficient of permeability . It was recommended that when designing diameter reduction of a drain, well resistance should be considered.

  • PDF

Improvement of Soft Marine Clay by Preloading and Wick Drain Method (선행하중과 Wick Drain공법에 의한 연약해성광토의 개량)

  • 유태성;박광준
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.7-24
    • /
    • 1987
  • Preloading surcharge method along with vertical drains was adopted to improve the performance of a very soft marine clay deposit. The onshore deposit, located in the Ulsan Bay area, consists of a 2 to 10m thick, very soft, highly compressible marine clay layer developed just below. the sea water level. The initial undrained shear strength of the clay layer was about 0.6 ton/m2. But, the deposit was designed after treatment to support some auxiliary facilities for a new ilo refinery plant, requiring bearing capacities of 3.6 to 5.4 ton/m2 and maximum allowablee settlement of less than 7.5cm. A total of 35, 000 wick drains Ivas installed to expedite drainage during preloading, and surcharge loads of up to 5m above the original ground level were applied in a step-by-step loading sequence to prevent ground failure by excess surcharge loads. An extensive program of field instrumentation was implemented to monitor the behavior of the clay deposit. Measurers!ends included settlements, excess pore pressure and its dissipation, ground farmer level fluctuation, and lateral movement of the so(t clay layer under the preloads. This paper describes the design concepts, construction methods and control procedures used for improvement of the clay layer. It also presents the ground behavior measured during construction, rind comparisons with theoretical predictions.

  • PDF

Experimental Investigation of Physical Mechanism for Asymmetrical Degradation in Amorphous InGaZnO Thin-film Transistors under Simultaneous Gate and Drain Bias Stresses

  • Jeong, Chan-Yong;Kim, Hee-Joong;Lee, Jeong-Hwan;Kwon, Hyuck-In
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.239-244
    • /
    • 2017
  • We experimentally investigate the physical mechanism for asymmetrical degradation in amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) under simultaneous gate and drain bias stresses. The transfer curves exhibit an asymmetrical negative shift after the application of gate-to-source ($V_{GS}$) and drain-to-source ($V_{DS}$) bias stresses of ($V_{GS}=24V$, $V_{DS}=15.9V$) and ($V_{GS}=22V$, $V_{DS}=20V$), but the asymmetrical degradation is more significant after the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20 V) nevertheless the vertical electric field at the source is higher under the bias stress ($V_{GS}$, $V_{DS}$) of (24 V, 15.9 V) than (22 V, 20 V). By using the modified external load resistance method, we extract the source contact resistance ($R_S$) and the voltage drop at $R_S$ ($V_{S,\;drop}$) in the fabricated a-IGZO TFT under both bias stresses. A significantly higher RS and $V_{S,\;drop}$ are extracted under the bias stress ($V_{GS}$, $V_{DS}$) of (22 V, 20V) than (24 V, 15.9 V), which implies that the high horizontal electric field across the source contact due to the large voltage drop at the reverse biased Schottky junction is the dominant physical mechanism causing the asymmetrical degradation of a-IGZO TFTs under simultaneous gate and drain bias stresses.