• Title/Summary/Keyword: vertical deflection

Search Result 287, Processing Time 0.026 seconds

Flying Characteristics of Running Tape above Rotating Head (II) -Experimental Analysis- (회전헤드에 대한 주행테이프의 부상특성 (II) -실험해석-)

  • 민옥기;김수경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 1991
  • This dissertation analyzes the running mechanism of flexible and thin tape above rotating head through the experiment. The scope of study is confined to measure the vertical deformation of running tape under hydrodynamic pressure invoking phenomena of elasto-hydrodynamic lubrication between the protruded bump on a rotating cylinder ad the running tape. Experimental system is devised to measure the vertical deflection of the running tape by opto-electronical displacement gauge, which enables to detect microscopic surface deflection of high frequency. Thorough the tests of small specimens of groove and bump, the accuracy and reliability of this experimental method is confirmed and achieved an accuracy within 5%(2.mu.m) error for the microscopic deflection with high frequency. In experimental works, the effects of bump size on flying characteristics of the tape were evaluated and examined. For the vertical deformation of the running tape. the numerical results and its trend agree qualitatively with the experimental ones.

An Analysis of the Attitude Estimation Errors Caused by the Deflection of Vertical in the Initial Alignment (초기정렬에서 수직편향으로 인한 자세 추정 오차 분석)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.235-243
    • /
    • 2022
  • In this paper, in the case of an inertial navigation system, the posture estimation error in the initial alignment due to vertical deflection is analyzed. Posture estimation error due to DOV was theoretically analyzed based on the speed and posture error of INS. Simulations were performed to verify the theoretical grinding, and the results were in good agreement. For example, in the case of η=20", an alignment error of ϕN=0.00287°, ϕU=0.00196° occurred, and in the case of 𝜉=20", an error of ϕE= -0.00286° occurred. Through this, it was confirmed that the vertical posture error caused by the DOV occurred as a coupling characteristic of the INS posture error. It has been shown that an additional posture error may occur due to the DOV, which was not considered in the existing INS alignment, which means that correction for the DOV must be considered when applying high-precision INS.

Vibration Reduction of Walking-type Cultivator's Handle using Modal Analysis and Operational Deflection Shapes Techniques (모드 해석과 운전 중 변형 형상 기법을 이용한 보행형 관리기의 핸들 진동 감소 방안)

  • 박영준;이윤세;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • The objectives of this study were to determine the natural frequency of a walking-type cultivator's handle using a modal analysis, to determine whether or not the handle resonates with forcing frequency induced by its engine, and to determine a method to reduce the handle vibration using a technique of the operational deflection shapes(ODS). Results of the study are as follows: The natural frequencies of the handle up to third harmonics were found to be 20.4, 22.5 and 92.1 Hz in the vertical direction and 14.9, 93, and 132 Hz in the horizontal direction. It was found that the handle does not resonate with the forcing frequency of the engine, which is 52 Hz. The operational deflection shape analysis revealed the deflected shapes of the handle in the vertical and horizontal directions and suggested that the handle vibration can be reduced by adding some mass to the place where the largest deflection occurs. Attaching of 1.1 kg mass adjacent to the largely deflected area resulted in reductions of vibration from 9.45 to 8.03 m/s$^2$ in x-axis direction from 3.89 to 3.16 m/s$^2$ in y-axis direction and from 7.89 to 3.09 m/s$^2$ in z-axis direction, which are respectively 15, 19 and 61% reductions. The total vibration level was reduced by 29%, indicating that mass-adding method by the ODS is very effective for reducing the handle vibrations of the cultivators.

A Study on the Comparison among Deflections of the Vertical Computed from Astronomical Coordinates and Geoid Models (천문경위도와 중력지로이드 모델로부터 구한 연직선 편차의 비교에 관한 연구)

  • 김용일;송창현;어양담;김형태
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 1999
  • In this study, we investigated the methods of computing deflection of the vertical and compared the results of deflections of the vertical computed from astronomical coordinates and GPS observations, and computed from PNU95, EGM96 geoid model. By comparing the results of the deflections of the vertical, we found out the followings; 1) The deflections of the vertical computed from astronomical coordinates and geoid models are similar to each other. 2) The difference between the deflections of the vertical computed from each geoid models was smaller than the difference of those computed from astronomic coordinates and geoid models. 3) The effects of distribution of the points on the results are less than those of the data used in the computation. If there exists reference data about the deflection of the vertical, it would be possible to evaluate the accuracy of the geoid model using this method.

  • PDF

Slope variation effect on large deflection of compliant beam using analytical approach

  • Khavaji, A.;Ganji, D.D.;Roshan, N.;Moheimani, R.;Hatami, M.;Hasanpour, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.405-416
    • /
    • 2012
  • In this study the investigation of large deflections subject in compliant mechanisms is presented using homotopy perturbation method (HPM). The main purpose is to propose a convenient method of solution for the large deflection problem in compliant mechanisms in order to overcome the difficulty and complexity of conventional methods, as well as for the purpose of mathematical modeling and optimization. For simplicity, a cantilever beam of linear elastic material under horizontal, vertical and bending moment end point load is considered. The results show that the applied method is very accurate and capable for cantilever beams and can be used for a large category of practical problems for the aim of optimization. Also the consequence of effective parameters on the large deflection is analyzed and presented.

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

AN ANALYSIS OF STRESS DISTRIBUTION IN THE CASE OF UNILATERAL MOLAR EXPANSION WITH PRECISION LINGUAL ARCH BY FINITE ELEMENT METHOD (구치 편측확장을 위한 Precision Lingual Arch 적용시 응력분포에 관한 유한요소법적 연구)

  • Koo, Bon-Chan;Sohn, Byung-Wha
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.721-733
    • /
    • 1994
  • Orthodontic tooth movement is closely related to the stress on the periodontal tissue. In this research the finite element method was used to observe the stress distribution and to find the best condition for effective tooth movement in the case of unilateral molar expansion. The author constructed the model of lower dental arch of average Korean adult and used $.032'\times.032'\times60mm$ TMA wire. The wire was deflected in the horizontal and vertical direction to give the 16 conditions. The following results were obtained ; 1. When the moment and force were controlled properly the movement of anchor tooth was minimized and the movement of moving tooth was maximized. 2. As the initial horizontal deflection increased the buccal displacement of both teeth was also increased. As the initial horizontal deflection increased the lingual movement of anchor tooth and the buccal movement of moving tooth increased. 3. When the initial horizontal and vertical deflection rate was 1.5 the effective movement of moving tooth was observed with minimal displacement of anchor tooth.

  • PDF

Integrated Monitoring System of Maglev Guideway based on FBG Sensing System (FBG 센서 기반의 자기부상열차 통합 모니터링 시스템)

  • Chung, Won-Seok;Kang, Dong-Hoon;Yeo, In-Ho;Lee, Jun-S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.761-765
    • /
    • 2008
  • This study presents an effective methodology on integrated monitoring system for a maglev guideway using WDM-based FBG sensors. The measuring quantities include both local and global quantities of the guideway response, such as stains, curvatures, and vertical deflections. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Frequency contents obtained from the proposed method are compared with those from a conventional accelerometer. Verification tests were conducted on the newly-developed Korean Maglev test track. It has been shown that good agreement between the measured deflection and the estimated deflection is achieved. The difference between the two peak displacements was only 3.5% in maximum and the correlations between data from two sensing systems are overall very good. This confirms that the proposed technique is capable of tracing the dynamic behavior of the maglev guideway with an acceptable accuracy. Furthermore, it is expected that the proposed scheme provides an effective tool for monitoring the behavior of the maglev guideway structures without electro magnetic interference.

  • PDF

Study on the Effects of the Mounting Direction of Vertically-launched Missiles in Vibration Tests (수직발사 유도탄의 진동시험에서 유도탄 장착방향의 영향에 대한 연구)

  • Lee, Hojun;Kim, Ki-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • Vertically-launched missiles are supported as erected vertically in the vertical launching system of warship, and they should be mounted in the same way when vibration-tested. However, mounting missiles vertically makes a fixture, which is a supporting structure, bulky and heavy so requiring a high-performance exciter. Mounting missiles as laid down horizontally in a vibration test is economical regarding fixture manufacturing and exciter performance, but it makes test results incorrect because the different mounting direction has effects on the test results. A bending moment due to missiles' weight happens to missiles, and resilient mounts, which support missiles in the vertical launch system, deflect differently from the real situation because of the static deflection of these mounts due to missiles' weight. If the resilient mounts supporting missiles have nonlinear force-deflection characteristics, vibration test results become more different from the true results. This paper proposes to support missiles with an additional resilient mount such as a bunge code in order to solve those problems coming from mounting vertically-launched missiles as laid down horizontally in vibration tests. The proposed approach enables to obtain the same test results as in their actual mounting condition even though vertically-launched missiles are mounted in a different direction.

Flat Panel Display Deflection Analysis Considering Lift Force in Non-Contact Flat Panel Display Conveyer System (비접촉 평판 디스플레이 이송장치에서 양력을 고려한 평판 디스플레이의 처짐 해석)

  • Hwang, Sung-Hyen;Choi, Hyeon-Chang;Lho, Te-Jung;Son, Te-Yong;Park, Bum-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.451-457
    • /
    • 2008
  • Flat Panel Display(FPD) is widely used a video display terminals to consumer products of LCD and PDP. The contamination and damage were affected by using the previous contact conveyor's method. In this paper, it analyzes the FPD deflection to develop the non-contact FPD transfer process using lift force. Each conveyor's equipment is called a horizontal conveyor, vertical conveyor and robot pick-up equipment. As result of an analysis of FPD panel's deflection, a robot pick-up equipment has performed according to under the present conditions like panel's weight and loaded glass to move FPD panel from one place to other places properly. Results of the analysis showed 0.474 mm, 0.424 mm and 1.237 mm. Those values are lower than a predicted optimum values : 2 mm for both horizontal and vertical conveyers; 5 mm for robot pick-up equipment. Therefore, those results verify each equipment have safety and reliability.