• Title/Summary/Keyword: vertical breakwaters

Search Result 53, Processing Time 0.018 seconds

Submerged Membrane Breakwaters I: A Rahmen Type System Composed of Horizontal and Vertical Membranes (수중 유연막 방파제 I : 수평-수직 유연막으로 구성된 라멘형 시스템)

  • 기성태
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2002
  • in the present paper, the hydrodynamics properties of a Rahmen type flexible porous breakwater interacting with obliquely or normally incident small amplitude waves are numerically investigated. This system is composed of dual vertical porous membranes hinged at th side edges of a submerged horizontal membrane. The dual vertical membranes are extended downward and hinged at seabed. The effects of permeability, Rahmen type membrane breakwater geometry pre-tensions on membranes, relative dimensionless wave number, and incident Wave headings are thoroughly examined.

Effects of Wave Dissipation with Circular Cylinders (원형파일군에 의한 파랑제어 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • One of the central problems in astudy of the coastal surface wave environment is predicting the transformation of waves as they propagate toward the shore. The transformation is mainly due to the existence of obstacles, such as breakwaters and vertical cylinders. In general, the types of wave transformation can be classified as follows: wave diffraction, reflection, transmission, scattering, radiation, et al. This research dealtwith wave transmission and dissipation problems for two dimensional irregular waves and vertical circular cylinders. Using the unsteady mild slope equation, a numerical model was developed to calculate the reflection and transmission of regular waves from a multiple-row circular breakwater and vertical cylinders. In addition, hydraulic model experiments were conducted with different values for the properties between tire piles and the opening ratio (distances) between the rows of the breakwater. It was found that the transmission coefficients decreased with a decrease in the opening ratio and an increase in the rows of vertical cylinders. A comparison between the results of hydraulic and numerical experiments showed reasonable agreement.

A Study on the Performance of Twin Hull Floating Breakwater (쌍동형 부유식 소파제의 소파성능에 관한 연구)

  • 박노식;엄병섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.128-134
    • /
    • 1998
  • This study is carried out the theoretical studies on wave transmission and motions in waves of twin hull type floating breakwaters with the vertical and horizontal plate. The method of calculation is based on the three dimensional singularity distribution method. The results show that wave transmission is affected by heave motion. Twin hull type is designed by the use of the theoretical method and good performance of the developed floating breakwater is confirmed for longer wave period.

  • PDF

Estimation of Wave Pressure on Vertical Breakwaters due to Tsunamis (직립 방파제에 작용하는 지진해일 파압산정)

  • Hong, Seong-Soo;Ha, Tae-Min;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • 국내 지진해일에 관한 연구 중, 구조물에 직접적인 영향을 미치는 파력에 대한 연구가 현재 미미한 실정이다. 본 연구에서는 파고와 입사각, 그리고 유의주기를 기지값으로 하여 파압을 계산하는 Goda(1974)가 제안한 파압공식을 이용하여 파압을 산정하였다. 파고는 Cho(1995) 모델로 산정하였으며 이를 임원항구의 방파제에 적용하였다.

  • PDF

Reliability-Based Design Optimization for a Vertical-Type Breakwater with an Emphasis on Sliding, Overturn, and Collapse Failure (직립식 방파제 신뢰성 기반 최적 설계: 활동, 전도, 지반 훼손으로 인한 붕괴 파괴를 중심으로)

  • Yong Jun Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.50-60
    • /
    • 2024
  • To promote the application of reliability-based design within the Korean coastal engineering community, the author conducted reliability analyses and optimized the design of a vertical-type breakwater, considering multiple limit states in the seas off of Pusan and Gunsan - two representative ports in Korea. In this process, rather than relying on design waves of a specific return period, the author intentionally avoided such constraints. Instead, the author characterized the uncertainties associated with wave force, lift force, and overturning moment - key factors significantly influencing the integrity of a vertical-type breakwater. This characterization was achieved by employing a probabilistic model derived from the frequency analysis results of long-term in-situ wave data. The limit state of the vertical-type breakwater encompassed sliding, overturning, and collapse failure, with the close interrelation between wave force, lift force, and moment described using the Nataf joint probability distribution. Simulation results indicate, as expected, that considering only sliding failure underestimates the failure probability. Furthermore, it was shown that the failure probability of vertical-type breakwaters cannot be consistently secured using design waves with a specific return period. In contrast, breakwaters optimally designed to meet the reliability index requirement of 𝛽-3.5 to 4 consistently achieve a consistent failure probability across all sea areas.

Reliability Analysis and Evaluation of Partial Safety Factors for Sliding of Caisson Breakwaters in Korea (국내 케이슨 방파제의 활동에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.278-289
    • /
    • 2009
  • In the present study, we evaluated the target reliability indices and partial safety factors for caisson sliding of a vertical breakwater. The average of the reliability indices of existing breakwaters was proposed as the target reliability index for the breakwater of normal safety level. The target reliability indices of high and low safety levels were also proposed based on the analysis of breakwaters in Korea and Japan. The partial safety factors were then proposed for each safety level by averaging the values calculated for 12 breakwater crosssections in Korea. The appropriateness of the proposed partial safety factors was partly verified by showing that the reliability index calculated by using the present partial safety factors is located between those of mild and steep bottom slopes of JPHA(2007). The proposed partial safety factors were inversely used to calculate the caisson width and reliability index of existing breakwaters. While the reliability indices of existing breakwaters designed by the deterministic method show a large variation, those designed by the partial safety factor method show a small variation. This indicates that the partial safety factor method allows a consistent design for given target probability of failure.

Calibration of Load and Resistance Factors for Breakwater Foundation Design. Application on Different Types of Superstructures (방파제 기초설계를 위한 하중저항계수의 보정(다른 형식의 상부구조 적용))

  • Huh, Jungwon;Doan, Nhu Son;Mac, Van Ha;Dang, Van Phu;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.287-292
    • /
    • 2021
  • Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.

Performance of integrated vertical raft-type WEC and floating breakwater

  • Tay, Zhi Yung;Lee, Luke
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.39-61
    • /
    • 2022
  • Renewable energy such as wave energy has gained popularity as a means of reducing greenhouse gases. However, the high cost and lack of available sea space in some countries have hindered the deployment of wave energy converters (WEC) as alternative means of sustainable energy production. By combining WECs with infrastructures such as floating breakwaters or piers, the idea of electricity generated from WECs will be more appealing. This paper considers the integration of vertical raft-type WEC (commonly known as the vertical flap WEC) with floating breakwater as means to generate electricity and attenuate wave force in the tropical sea. An array of 25 WECs attached to a floating breakwater is considered where their performance and effect on the wave climate are presented. The effects of varying dimensions of the WEC and mooring system of the floating breakwater have on the energy generation are investigated. The integrated WECs and floating breakwater is subjected to both the regular and irregular waves in the tropical sea to assess the performance of the system. The result shows that the integrated vertical flap-floating breakwater system can generate a substantial amount of wave energy and at the same time attenuate the wave force effectively for the tropical sea when optimal dimensions of the WECs are used.

Analysis of Change Process in the Design Conditions of Harbor Breakwaters in Korea (우리나라 항만 방파제 설계조건의 변화과정 분석)

  • Hong, Keun;Kang, Yoon-Koo;Kim, Hong-Jin;Yoon, Han-Sam;Ryu, Cheong-Ro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • We studied the change process in the design parameters (conditions) of structural sections of vertical/slope breakwaters in Korea over the long term based on an analytical review of the latest design recommendations. This study found the following. 1) Design wave heights have increased gradually with the increase in the wave height of deep sea waves. 2) The relative design wave height ($H_{1/3}/h$) changed from 0.5 in the 1970s to 0.6~0.7 today. This means that design wave heights are overestimated compared with the water depth. 3) Before 1999, the design water level was based on high water during an average spring tide, but this has been increased since 2000 because of additional consideration of anomalous sea levels. 4) Before 1999, the relative crest heights of the investigated breakwaters was 0.6~0.7, but after 1999 this increased to a mean of 1.0 and maximum of 1.26.

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.