• Title/Summary/Keyword: ventricular assist

Search Result 134, Processing Time 0.021 seconds

Pediatric Mechanical Circulatory Support

  • Wilmot, Ivan;Lorts, Angela;Morales, David
    • Journal of Chest Surgery
    • /
    • v.46 no.6
    • /
    • pp.391-401
    • /
    • 2013
  • Mechanical circulatory support (MCS) in the pediatric heart failure population has a limited history especially for infants, and neonates. It has been increasingly recognized that there is a rapidly expanding population of children diagnosed and living with heart failure. This expanding population has resulted in increasing numbers of children with medically resistant end-stage heart failure. The traditional therapy for these children has been heart transplantation. However, children with heart failure unlike adults do not have symptoms until they present with end-stage heart failure and therefore, cannot safely wait for transplantation. Many of these children were bridged to heart transplantation utilizing extracorporeal membranous oxygenation as a bridge to transplant which has yielded poor results. As such, industry, clinicians, and the government have refocused interest in developing increasing numbers of MCS options for children living with heart failure as a bridge to transplantation and as a chronic therapy. In this review, we discuss MCS options for short and long-term support that are currently available for infants and children with end-stage heart failure.

A Study of the Acoustical Properties of the Mechanical Heart Valve Using MUSIC (MUSIC을 이용한 기계식 심장 판막의 음향 신호 특성 연구)

  • Yi S. W.;Choi M. J.;Min B. G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.131-134
    • /
    • 1999
  • This paper considers the acoustical characteristics of the mechanical valve employed in the Korean type Artificial Heart. $Bj\"{o}rk-Shiley$ tilting disc valve was chosen for the study and acoustic measurements were performed for the artificial heart operated in a mock circulation system as well as implanted to an animal as a Bi Ventricular Assist Device (BVAD). In the mock system, three different conditions of the valve were examined which were normal, damaged (torn off), pseudothrombus attached. Microphone measurements for the BVAD were carried out at a regular time interval for 5 days after the implantation operation. Of the recorded acoustic emissions from the artificial heart, click sounds mainly originated from the valves were further analyzed using Multiple Signal Classification (MUSIC) for estimating their spectral properties. It was shown that the spectral peaks below 4 kHz and the optimal order number for MUSIC, equivalent to the number of the spectral component, might be the key parameters which were highly correlated to the physiological states of the valve like the mechanical damage of the valve or the formation of thrombus on the valves.

  • PDF

Stiffness Modeling of Toroidally-Wound BLDC Machine (환형권선 BLDC 전동기의 강성계수 모델링)

  • Lee, Hyun-Chu;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • Toroidally-wound brushless direct-current (BLOC) machines are compact, highly efficient, and can work across a large magnetic gap. For these reasons, they have been used in pumps, flywheel energy storage systems and left ventricular assist devices among others. The common feature of these systems is a spinning rotor supported by a set of (either mechanical or magnetic) bearings. From the view point of dynamics, it is desirable to increase the first critical speed of the rotor so that it can run at a higher operating speed. The first critical speed of the rotor is determined by the radial stiffnesses of the bearings and the rotor mass. The motor also affects the first critical speed if the rotor is displaced from the rotating center. In this paper, we analytically derive the flux density distribution in a toroidally-wound BLOC machine and also derive the negative stiffness of the motor, based on the assumption that the rotor displacement perturbs the flux density distribution linearly. The estimated negative stiffness is validated by finite element analyses.

Development of an Algorithm for Regulation of Inlet Blood Flow in Electrohydraulic Left Ventricular Assist Device (전기유압식 좌심실 보조장치의 유입혈류량 조절 알고리즘의 개발)

  • Choi, Jae-Soon;Choi, Won-Woo;Jo, Yung-Ho;Park, Seong-Keun;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.211-215
    • /
    • 1995
  • 전기유압식 좌심실 보조장치에서 모터 전류 파형을 정보로 하여 작동기의 이완기 속도를 조절함으로써 좌심방으로부터 유입되는 혈류량을 조절하는 알고리즘을 개발하였다. 전기 유압식 좌심실 보조장치에서는 혈액의 유입이 능동적으로 이루어지므로, 좌심방 함몰로 인한 심근 손상 및 외부 공기 유입으로 인한 색전증을 방지하기 위해 유입혈류량을 현재 좌심방 내의 상태에 따라 적절히 조절해 주어야 한다. 좌심방 내의 혈액량 정도는 혈액을 유입해내는 작동기의 이완기 동작 시에 소모되는 에너지 크기에 반영되고, 작동기를 구동하는 모터에 들어가는 전류의 크기는 작동기에 공급되는 에너지에 비례하므로, 이 전류 파형의 정보들을 통해 좌심방 내의 상태를 추정해 볼 수 있다. 본 논문에서는 퍼지로직을 적용하여 모터 전류 파형의 이상 유무를 판단한 뒤 이에 따라 작동기의 이완기 속도를 조절하는 알고리즘을 개발하여 모의순환장치 실험을 통해 그 실효성을 검증한 결과를 정리하였다.

  • PDF

Treatment of Pulmonary Hypertensive Crisis Using ECMO - A Case Report - (성인의 선천성 심질환 수술 후 발생한 폐동맥 고혈압 위기증에서 체외막 산소화 장치를 이용한 치험 - 1례 보고 -)

  • 최재성;김기봉
    • Journal of Chest Surgery
    • /
    • v.35 no.9
    • /
    • pp.664-667
    • /
    • 2002
  • Extracorporeal membrane oxygenation(ECMO) provides stable oxygenation to prevent elevation of pulmonary vascular resistance and bypasses a significant part of cardiac output to the pulmonary vascular bed to reduce pulmonary perfusion pressure. In addition, ECMO prevents right heart failure and low cardiac output by means of ventricular assist and reduction in volume load to right ventricle. As a result, ECMO can be used for the treatment of pulmonary hypertensive crisis after surgery for congenital heart disease, especially when it is refractory to conventional measures. We report a case of postoperative pulmonary hypertensive crisis, developed in a 37-year-old male with patent ductus arteriosus with secondary pulmonary hypertension, which was successfully managed including ECMO.

A Clinical Experience of Korean Artificial Heart(AnyHeart) (한국형 인공심장(AnyHeart)의 임상경험)

  • Sun, Kyung;Son, Ho-Sung;Jung, Jae-Seung;Chung, Bong-Kyu;Lee, Sung-Ho;Shin, Jae-Seung;Kim, Kwang-Taik;Lee, Hye-Won;Min, Byoung-Goo;Kim, Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.35 no.7
    • /
    • pp.548-552
    • /
    • 2002
  • Korean artificial heart(AnyHeart) is a single-pieced and implantable hi-ventricular pulsaile pump adapting a moving actuator mechanism. The authors report a case of clinical application of AnyHeart as a life-saving device for the patients with end-stage heart disease combined with biventricular failure.

Emulation of Tri-Phasic Pulsatile Flow Using LVAD (좌심실 보조기를 이용한 3상형 박동류 모의)

  • 이동혁;김종효
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.313-320
    • /
    • 1998
  • Tri-phasic pulsatile flow is the general flow pattern of human circulary system. In emulating the various situation of cardiovascular system, it is essential to make tri-phasic source flow. To emulate tri-phasic pulsatile flow, we used electro-hydronic style LVAD(Left Ventricular Assist Device) with glass phantom and rubber tube. We have selected control parameters and examined the changing effect of each parameter by using Doppler ultrasound. In this experiment, it was shown that the distal compliance and the break time were the major factors to form tri-phasic flow. The results make it possible to emulate and explain the various situation of human vascular system. In this point, this results will be an useful method in the clinic application.

  • PDF

A Study on the Evaluation of Hydrodynamic Performance of Trileaflet Prosthetic Heart Valves (삼엽식 인공판막의 수력학적 성능평가에 관한 연구)

  • 김혁필;이계한
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.147-156
    • /
    • 1997
  • Various prosthetic heart valves have been developed and used clinically, but they have problems, such as thrombogenecity, hemoltsis, high cost and low durability. New types of trileaflet polymer heart valves have been developed in order to use them as inlet and outlet valves in a ventricular assist device. The aim of this study is to determine the hydrodynamic effectiveness of the newly designed trileaflet polymer valves and their feasibility for temporary use in the blood pumps. Trileaflet polymer valves are made of polyurethane, because of its good blood compatibility, high tonsil strength and good resistance to fatigue. An in vitro experimental investigation was perf'ormed in order to ev91ua1e hydrodynamic performance of the trileaflet polymer valves having different design and fabrication tech- niques. The St. Jude Medical valve (SJMV) and floating-type monoleaflet polymer valve (MLPV) were also tested The pressure drop across the valve, leakage volume, and the flow patterns mere investigated for valves. The result of comparative tests showed that the trileaflet polymer valves had a better hydrodynamic performance than the others. TPV which has two stable membrane shape showed the lowest back flow. The pressure hops of TPVs were lower than that of MLPV, but slightly higher than SJMV. The hydrodynamic performance of valves under the pulastile flow showed the similar results as steady flow. The velocity profiles and turbulent intensities were measured at the distal sites of valves using a hot-film anemometer. Central flow was maintained in trileaflet polymer valves, and the maximum turbulent intensities were lower in TPVs comparing to MLPV.

  • PDF

Energetics of the Heart Model with the Ventricu1ar Assist Device

  • Chung, Chanil-Chung;Lee, Sang-Woo;Han, Dong-Chul;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 1996
  • We investigated the energistics of the physiological heart model by comparing predictive indexes of the myocardial oxygen consumption (MOC), such as tension-time index (R), tension-time or force-time inteual (FTI), rate-pressure product (RPP), pressure-work index, and systolic pressure-volume area (PVA) when using the electro-hydraulic left ventricular device (LVAD). We developed the model of LVAD incorporated the closed-loop cardiovascular system with a baroreceptor which can control heart rate and time-varying elastance of left and right ventricles. On considering the benefit of the LVAD, the effects of various operation modes, especially timing of assistance, were evaluated using this coupled computer model. Overall results of the computer simulation shows that our LVAD can unload the ischemic (less contractile) heart by decreasing the MU and increasing coronary flow. Because the pump ejection at the end diastolic phase of the natural heart may increase the afterload of the left ventricle, the control scheme of our LVAD must prohibit ejecting at this time. Since the increment of coronary flow is proportional to the peak aortic pressure after ventricle contraction, the LVAD must eject immediately following the closure of the aortic valve to increase oxygen availability.

  • PDF

Experimental Approach for the Estimation of Cardiac Output of Left Ventricular Assist Device Using Multi-dimensional Interpolation Technique

  • Om, K.S.;Choi, W.W.;An, J.M.;Park, S.K.;Jo, Y.H.;Choi, J.S.;Lee, J.J.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.232-234
    • /
    • 1996
  • Cadiac output estimation scheme of LVAD using multi-dimensional interpolation technique was introduced in this paper. This paper also show appropriate input -output data for estimation. Experimental results show our approach is a good one for the estimation of nonlinear hemodynamics.

  • PDF