• 제목/요약/키워드: ventral tegmentum

검색결과 3건 처리시간 0.014초

야생등줄쥐 흑색질 및 배쪽피개의 dopamine성 신경세포 (Dopaminergic neurons of the substantia nigra and ventral tegmentum in the stripped field mouse(apodemus agrarius coreae))

  • 정영길;김길수;이철호;윤원기;현병화;오양석;원문호;김무강
    • 대한수의학회지
    • /
    • 제37권3호
    • /
    • pp.489-497
    • /
    • 1997
  • The distributions characteristics of neurons displaying immunoreactivity to the catecholamine synthetic enzymes, tyrosine hydroxylase(TH), dopamine-${\beta}$-hydroxylase(DBH), and phenylethanolamine-N-methyltransferase(PNMT) were examined in the adjacent sections of the substantia nigra & ventral tegmentum of the Striped Field Mouse(Apodemus agrarius coreae). None of these cell groups displayed either DBH or PNMT immunoreactivity. Many TH-immunoreactive neurons were present in the substantia nigra & ventral tegmentum. The major dopaminergic cell(TH-positive, DBH- & PNMT-negative) group in the midbrain was present in the pars compacta of substantia nigra and adjacent ventral tegmentum. And smaller dopaminergic cell groups Were found in the pars reticulata of the substantia nigra and central liner nucleus.

  • PDF

뇌의 REM 수면 발생기전 (Brain Mechanisms Generating REM Sleep)

  • 손진욱
    • 수면정신생리
    • /
    • 제2권2호
    • /
    • pp.133-137
    • /
    • 1995
  • The author reviews current knowledge about what REM sleep is and where and how it is generated. REM sleep is the state in which our most vivid dreams occur. REM sleep is identified by the simultaneous presence of a desynchronized cortical EEG, an absence of activity in the antigravity muscles(atonia), and periodic bursts of rapid eye movements. Another characteristic phenomena of REM sleep are the highly synchronized hippocampal EEG of theta frequency and the ponto-geniculo-occipital(PGO) spike. All these phenomena can be explained in terms of changes in neuronal activity. Transection studies have determined that the pons is sufficient for generating REM sleep. Lesion studies have identified a small region in the lateral pontine tegmentum corresponding to lateral portions of the nucleus reticularis pontis oralis(RPO) and the region immediately ventral to the locus coeruleus, which is required for REM sleep. Unit recording studies have found a population of cells within this region that is selectively active in REM sleep. Cholinergic neurons of the giant cell field of pontine tegmentum(ETG), which is 'REM a sleep-on cells', has shown to be critically involved in the generation of REM sleep. Noradrenergic neurons of the locus coeruleus and serotonergic neurons of the dorsal raphe, which are called 'REM sleep-off cells', appear to act in a reciprocal manner to the cholinergic neurons. It is proposed that the periodic cessations of discharge of 'REM sleep-off cells' during REM sleep might be significant for the prevention of the desensitization of receptors of these neurons.

  • PDF

신전반사에 의해 유발된 휴지기성 진전 1예 (Stretch Reflex Induced Resting Tremor(SRIRT))

  • 김지성;서만욱;신병수;김영현
    • Annals of Clinical Neurophysiology
    • /
    • 제3권2호
    • /
    • pp.168-171
    • /
    • 2001
  • It has been said that variable anatomical structures and neural circuits are related to the generation of tremor. There are cerebral cortex, thalamus, basal ganglia, inferior olivary nucleus, midbrain tegmentum, stretch reflex, and musculoskeletal structures. The stretch reflex is related with the physiologic tremor and various peripherally originated tremors. We experienced a case with the post-stroke resting tremor which was induced and aggravated by mechanical stretching stimulation. In the present case, stretch reflex has a major role in the generation and exacerbation of tremor. It is presumed that the development of tremor is attributed to the increased rhythmicity of ventral intermedius nucleus of thalamus. The enhancement of thalamic rhythmicity may be due to the increasement of long latency reflex by post-stroke rigidity. This case suggests that stretch reflex may have a major role in the pathophysiologic mechanisms of a certain centrally originated tremor.

  • PDF