• Title/Summary/Keyword: velocity-lag

Search Result 63, Processing Time 0.026 seconds

3차원 경합 海水流動 모델의 開發과 水營蠻의 폐수유동 (Development of Three-dimensional Baroclinic Hydrodynamic Model and flow Patterns of the Suyoung Bay)

  • 김차겸;이종섭
    • 한국해양학회지
    • /
    • 제28권2호
    • /
    • pp.86-100
    • /
    • 1993
  • ADI(Alternating Direction Implicit) 유한차분법을 사용하여 3차원 경합 해수유 동 모델 BACHOM-3을 개발하였다. 본 모델을 장방형 내만에서 하나의 결점을 갖는 정상 파에 적용하여 해석해와 비교하였으며, 그 결과 해석해와 잘 일치하였다. 모델의 현지 적용성과 수영만의 해수유동을 조사하기 위해 모델을 수영만에 적용하여 대조기 평수 시 현지관측결과와 비교하였으며, 그 결과 현지 관측결과와 비교적 잘 일치하였다. 만 중앙부의 제 1층(수심 0∼2 m)과 제 2층(수심 2∼5 m)에서 조석잔차류는 시계방향으로 회전하는 순환류가 나타났으며, 또한 낙조류가 창조류보다 강하게 나타났다. 계산된 유속분포에 의하면, 표층과 저층 사이에 유속의 위상차가 나타나며, 표층으로 갈수록 위상의 지연이 나타났다. 그리고, 본 모델을 홍수시와 바람 효과를 고려한 흐름 장의 계산에도 적용하였다. 해양에서 육지로 바람이 불 때 표층에서는 풍향에 대응하는 유 속분포를 나타냈으나, 저층의 육지경계부근에서는 풍향과 반대방향의 흐름이 나타났 다.

  • PDF

Long-term simultaneous monitoring observations of SiO and H2O masers toward Mira variable WX Serpentis

  • Lim, Jang Ho;Kim, Jaeheon;Son, Seong Min;Suh, Kyung-Won;Cho, Se-Hyung;Yang, Haneul;Yoon, Dong-Hwan
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.49.1-49.1
    • /
    • 2021
  • We carried out simultaneous monitoring observations of five maser lines, H2O (22 GHz), SiO 𝝊 =1, 2, J =1-0 (43.1, 42.8 GHz), and SiO 𝝊 =1, J=2-1, J =3-2 (86.2, 129.3 GHz), toward the Mira variable star WX Serpentis with the 21-m antennas of the Korean VLBI Network (KVN) in 2009-2021 (~12 years). Most spectra of the H2O maser are well separated into two parts of two blue- and one redshifted features within ± 10 km s-1 of the stellar velocity. All detected SiO masers are generally concentrated within ± 5 km s-1 of the stellar velocity, and sometimes appear split into two components. Overall, the profiles of SiO and H2O masers detected in WX Serpentis illustrate typical characteristics of the Mira variable. In addition, flux variations of both SiO and H2O masers are well correlated with the optical light curve of the central star, showing a phase lag of ~ 0.1 for SiO masers and ~ 0.2 for H2O maser. This phenomenon is considered to be the direct effect of propagating shock waves generated by the stellar pulsation, because SiO and H2O masers are sequentially distributed at different positions with respect to the central star. In addition, we analyzed long-term trends and characteristics of maser velocities, maser ratio, and the velocity extents (the full width at zero power; FWZP). We also investigated a spectral energy distribution (SED) ranging from 1.2 to 240 ㎛ obtained using several infrared data: 2MASS, WISE, IRAS, ISO, COBE DIBRE, RAFGL, and AKARI (IRC and FIS). From the IRAS LRS and ISO SWS spectra of this star, we identified 9.7 and 12 ㎛ silicate emission features consistent with the SE6 spectrum model, corresponding to the typical AGB phase.

  • PDF

Aerodynamic and Aeroelastic Tool for Wind Turbine Applications

  • Viti, Valerio;Coppotelli, Giuliano;De Pompeis, Federico;Marzocca, Pier
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.30-45
    • /
    • 2013
  • The present work focuses on the unsteady aerodynamics and aeroelastic properties of a small-medium sized wind-turbine blade operating under ideal conditions. A tapered/twisted blade representative of commercial blades used in an experiment setup at the National Renewable Energy Laboratory is considered. The aerodynamic loads are computed using Computational Fluid Dynamics (CFD) techniques. For this purpose, FLUENT$^{(R)}$, a commercial finite-volume code that solves the Navier-Stokes and the Reynolds-Averaged Navier-Stokes (RANS) equations, is used. Turbulence effects in the 2D simulations are modeled using the Wilcox k-w model for validation of the CFD approach. For the 3D aerodynamic simulations, in a first approximation, and considering that the intent is to present a methodology and workflow philosophy more than highly accurate turbulent simulations, the unsteady laminar Navier-Stokes equations were used to determine the unsteady loads acting on the blades. Five different blade pitch angles were considered and their aerodynamic performance compared. The structural dynamics of the flexible wind-turbine blade undergoing significant elastic displacements has been described by a nonlinear flap-lag-torsion slender-beam differential model. The aerodynamic quasi-steady forcing terms needed for the aeroelastic governing equations have been predicted through a strip-theory based on a simple 2D model, and the pertinent aerodynamic coefficients and the distribution over the blade span of the induced velocity derived using CFD. The resulting unsteady hub loads are achieved by a first space integration of the aeroelastic equations by applying the Galerkin's approach and by a time integration using a harmonic balance scheme. Comparison among two- and three- dimensional computations for the unsteady aerodynamic load, the flap, lag and torsional deflections, forces and moments are presented in the paper. Results, discussions and pertinent conclusions are outlined.

조류 조화상수의 월변동성 완화 방법 고찰 (Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants)

  • 변도성
    • Ocean and Polar Research
    • /
    • 제33권3호
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.

석탄화염내 화학반응에 관한 연구 (Chemical Reactions in the Coal-Methane-Air Flame)

  • 박호영;안달홍;김종진
    • 에너지공학
    • /
    • 제11권2호
    • /
    • pp.166-177
    • /
    • 2002
  • 본 연구는 화염안정을 위해 약간의 메탄을 첨가한 1차원, Hat, 예혼합, 층류 석탄-공기 화염구조에 관한 연구로서 반응영역을 늘리기 위해 0.3 atm에서 운전되는 저압버너를 사용하였다. 본 연구에서는 가스 온도, 주요가스의 농도, 샘플된 촤의 분석과 화염속도에 대하여 여러 모델들의 해석결과를 실험결과와 서로 비교하였다. 여러 모델중 촤 표면적 지수(S=4)와 휘발성분에 대해 각각의 탈휘발화 속도상수를 적용한 model II $I^{*}$ -d가 실험치와 비교적 일치함을 보여주었다. 샘플된 촤의 분석 결과 입자의 반응이 낮게 예측되어져 촤 표면적지수를 증가시켜야만 했다. 이 지수는 촤의 반응 표면적에 대한 민감도 분석으로부터 얻어진 결과였고 model II $I^{*}$ -d의 화염속도 해석결과는 대부분의 측정치에 근접한 결과를 보여주고 있다. 고체 입자 직경은 열적 지연과 반응표면적을 통하여 탈휘발화율과 촤 산화에 큰 영향을 주며 이는 곧 화염속도에 영향을 주고 있음을 보여주었다.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

NUMERICAL MODELLING OF SHEET-FLOW TRANSPORT UNDER WAVE AND CURRENT

  • Bakhtiary, Abbas-Yeganeh;Hotoshi Gotoh;Tetsuo Sakai
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.75-84
    • /
    • 2002
  • An Euler-Lagrange two-phase flow model is presented fur simulation sheet-flow transport under wave and current. The flow is computed by solving the Reynolds Averaged Navier-Stokes equation in conjunction with the k-$\varepsilon$ turbulence model for turbulence closure. The sediment transport is introduced as a motion of granular media under the action of unsteady flow from the Lagragian point of view. In other word, motion of every single particle is numerically traced with Movable Bed Simulator (MBS) code based on the Distinct Element Method (DEM), in which the frequent interparticle collision of the moving particles during the sheet-flow transport is sophisticatedly taken into account. The particle diameter effect on time-dependent developing process of sheet-flow transport is investigated, by using three different diameter sizes of sediment. The influence of an imposed current on oscillatory sheet-flow transport is also investigated. It is concluded that the sediment transport rate increases due to the relaxation process related to the time-lag between flow velocity and sediment motion.

  • PDF

북반구 하부성층권 극기온의 경년변화와 수십년주기변화의 수치모의 (A Numerical Simulation of the Interannual and Decadal Variations of the Northern Lower Stratospheric Polar Temperature)

  • 최우갑;김유진;김동준
    • 대기
    • /
    • 제19권1호
    • /
    • pp.79-91
    • /
    • 2009
  • Seoul National University General Circulation Model (SNUGCM) has been run for 100 years to obtain daily temperature and meridional velocity at the Northern lower stratosphere. The model results are compared with the NCEP/NCAR reanalysis data. The polar temperature and the eddy heat flux from the model show that the model-produced climatology has well-known cold bias and weaker planetary wave activities. The model climatology also has a lag in the seasonal evolution. The relationship between the model-produced polar temperature and the eddy heat flux is investigated with respect to the interannual and decadal time scales. The interannual variation of the polar temperature is related with both total and stationary eddy heat flux in January and March, which is in agreement with observation. The model, however, does not reproduce the relationship between the decadal variation of the polar temperature and transient eddy heat flux, which is revealed in the observed data.

2007년 3월 31일 서해에서 발생한 기상해일에 대한 기상학적 분석 (Atmospheric Analysis on the Meteo-tsunami Case Occurred on 31 March 2007 at the Yellow Sea of South Korea)

  • 김현수;김유근;우승범;김명석
    • 한국환경과학회지
    • /
    • 제23권12호
    • /
    • pp.1999-2014
    • /
    • 2014
  • A meteo-tsunami occurred along the coastline of South Korea on 31 March 2007, with an estimated maximum amplitude of 240 cm in Yeonggwang (YG). In this study, we investigated the synoptic weather systems around the Yellow sea including the Bohai Bay and Shandong Peninsula using a weather research and forecast model and weather charts of the surface pressure level, upper pressure level and auxiliary analysis. We found that 4-lows passed through the Yellow sea from the Shandung Peninsula to Korea during 5 days. Moreover, the passage of the cold front and the locally heavy rain with a sudden pressure change may make the resonance response in the near-shore and ocean with a regular time-lag. The sea-level pressure disturbance and absolute vorticity in 500 hPa projected over the Yellow sea was propagated with a similar velocity to the coastline of South Korea at the time that meteo-tsunami occurred.

외피유체 없이 입자 빔의 발생: 유세포 분류기 응용 (Generation of sheath-free particle beam: application to micro-flow cytometry)

  • 김영원;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.581-584
    • /
    • 2008
  • A generation of a particle beam is the key technique in a flow cytometry that measures the fluorescence and light scattering of individual cell and other particulate or molecular analytes in biomedical research. Recent methods performing this function require a laborious and time-consuming assembly. In the present work, we propose a novel device for the generation of an axisymmetrical focusing beam of microparticles (3-D focusing) in a single capillary without sheath flows. This work uses the concept that the particles migrate toward the centerline of the channel when they lag behind the parabolic velocity profile. Particle focusing of spherical particles was successfully made with a beam diameter of about 10 ${\mu}$m. Proposed device provides crucial solutions for simple and innovative 3-D particle focusing method for the applications to the MEMS-based micro-flow cytometry. We believe that this device can be utilized in a wide variety of applications, such as biomedical/ biochemical engineering.

  • PDF