• Title/Summary/Keyword: velocity scale

Search Result 1,277, Processing Time 0.029 seconds

An Experimental Study on the Determination of Backlayering Distance in Tunnel Fires (터널 화재시 역기류의 위치 결정에 관한 실험적 연구)

  • 이성룡;유홍선
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • In this study reduced-scale experiments were conducted to determine the backlayering distance in tunnel fires. The 1/20 scale experiments were carried out under the Froude scaling using ethanol square pool fire ranging from 8 to 1km in each side with total heat release rate from 2.47 to 12.30 ㎾. It has been found that ventilation velocity increases with aspect ratio(tunnel height/tunnel width). At L$\_$B/$\^$*/ <5 the ventilation velocity increases proportional to the backlayering distance from 0.25 power of the heat release rate. However at L$\_$B/$\^$*/ $\geq$5 the ventilation velocity varies as the 0.3 power of the heat release rate.

The Vertical Disk Structure and Star Formation in Nearby Edge-On Galaxies

  • Yim, Kijeong;Wong, Tony;Rand, Richard;Rosolowsky, Erik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.31.3-32
    • /
    • 2016
  • We present the radial variations of the scale heights and the vertical velocity dispersions in a sample of nearby edge-on galaxies using BIMA/CARMA $^{12}CO$ ($J=1{\rightarrow}0$), VLA/EVLA HI, and Spitzer $3.6{\mu}m$ data. Both the disk thicknesses and the velocity dispersions of gas and stars vary with radius, contrary to assumptions of previous studies. We investigate how the interstellar gas pressure and the gravitational instability parameter differ from values derived assuming constant velocity dispersions and scale heights. Using the measurement of the disk thicknesses and the derived radial profiles of gas and stars, we estimate the corresponding volume densities. The gravitational instability parameter Q follows a fairly uniform profile with radius and is ${\geq}1$ across the star-forming disk. The star formation law has a slope that is significantly different from those found in more face-on galaxy studies. The midplane gas pressure appears to roughly hold a power-law correlation with the midplane volume density ratio (${\rho}_{H2}/{\rho}_{HI}$).

  • PDF

Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity (고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발)

  • Baek, Seong Gu;Lim, Hyo Jae;Chung, Myung Kyoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF

Large-Scale Turbulent Vortical Structure Inside a Sudden Expansion Cylinder Chamber (급 확대부를 갖는 실린더 챔버 내부 유동의 큰 척도 난류 보텍스 구조에 관한 연구)

  • Seong, Hyeong-Jin;Go, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.905-914
    • /
    • 2001
  • A large eddy simulation(LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model is employed and the calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of the inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing them with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structure behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent mixing process behind the flame holder is analyzed by visualizing the sectional views of vortical structure.

Structure and Characteristics of Diffusion Flame behind a Bluff-Body in a Divergent Flow(I) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 (1))

  • 최병륜;이중성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1269-1279
    • /
    • 1995
  • An experimental study is carried out on turbulent diffusion flames stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. Flame stability limits, as well as size and temperrature of recirculation zone, are measured by direct and schlieren photographs to clarify the characteristics and structure of diffusion flames and to assess the effect of various divergent angle of duct. The results of the present study are as follows. Temperature in the recirculation zone decreases with increasing divergent angle. The blow-off velocity in parallel duct is higher than that in divergent duct. Critical blow-off velocity is expected to be about 8-12 degree through blow-off velocity pattern. Regardless of divergent angles, the length of recirculation zone is nearly constant, and this length becomes longer with rod diameter. Pressure gradient has an effect on the eddy structure in shear layer behind the rod. With the increase of divergent angle, large scale eddies by dissipated energy in shear layer are split into small scale eddies, and the flame becomes a typical distributedreacting flame.

Micro- PIV Measurements of Microchannel Flows and Related Problems (마이크로 채널 내부 유동의 Micro-PIV측정과 제반 문제점)

  • Lee Sang-Joon;Kim Guk-bae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.79-84
    • /
    • 2002
  • Most microfluidic devices such as heat sinks for cooling micro-chips, DNA chip, Lab-On-Chip, and micro pumps etc. have microchannels of various size. Therefore, the design of practical microfluidics demands detail information on flow structure inside the microchannels. However, detail velocity field measurements are rare and difficult to carry out. In addition, as the microfluidics expands, accurate understanding of microscale transport phenomena becomes very important. In this research, micro-PIV system was employed to measure the velocity fields of flow inside a micro-channel. We carried out PIV measurements for several microchannels with varying channels width, inlet and outlet shape, filters, CCD camera and ICCD camera, etc. For effective composition of micro-PIV system, first of all, it is essential to understand optics related with micro-imaging of particles and the particle dynamics encountered in micro-scale channel flows. In addition, it is necessary to find the optimal condition for given experimental environment and? micro-scale flow to be investigated. The problems encountered in measuring velocity field of micro-channel flows are discussed in this paper.

  • PDF

Real-time seismic structural response prediction system based on support vector machine

  • Lin, Kuang Yi;Lin, Tzu Kang;Lin, Yo
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.163-170
    • /
    • 2020
  • Floor acceleration plays a major role in the seismic design of nonstructural components and equipment supported by structures. Large floor acceleration may cause structural damage to or even collapse of buildings. For precision instruments in high-tech factories, even small floor accelerations can cause considerable damage in this study. Six P-wave parameters, namely the peak measurement of acceleration, peak measurement of velocity, peak measurement of displacement, effective predominant period, integral of squared velocity, and cumulative absolute velocity, were estimated from the first 3 s of a vertical ground acceleration time history. Subsequently, a new predictive algorithm was developed, which utilizes the aforementioned parameters with the floor height and fundamental period of the structure as the new inputs of a support vector regression model. Representative earthquakes, which were recorded by the Structure Strong Earthquake Monitoring System of the Central Weather Bureau in Taiwan from 1992 to 2016, were used to construct the support vector regression model for predicting the peak floor acceleration (PFA) of each floor. The results indicated that the accuracy of the predicted PFA, which was defined as a PFA within a one-level difference from the measured PFA on Taiwan's seismic intensity scale, was 96.96%. The proposed system can be integrated into the existing earthquake early warning system to provide complete protection to life and the economy.

Direct Numerical and Large Eddy Simulations of Transitional Flows around Turbulence Stimulators at Very Low Speeds (초저속 영역에서 난류 촉진기 주위 천이 유동의 직접 수치 및 대형 와 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.265-273
    • /
    • 2018
  • Direct numerical and large eddy simulations of transitional flows around studs installed on flat plate and bulbous bow have been performed to investigate an effectiveness of turbulence stimulators on laminar-to-turbulence transition at a very low speed. The flow velocity was determined to be 0.366m/s corresponding to 4 knots of full-scale ship speed when the objective ship was Kriso container ship. The spatial evolution of skin friction coefficient disclosed that a fully development of turbulence was observed behind the second stud installed on flat plate while a rapid transition from laminar to turbulence gave rise to the fully development of turbulence behind the first stud installed on bulbous bow. A comparison of streamwise mean velocity profiles showed that the viscous sublayer and log-layer were in good agreement with previous results although the friction velocity of Smagrosinsky sub-grid scale model was about 10% larger than that of direct numerical simulation. While the turbulence intensities of bulbous bow was similar to those of flat plate in inner region, larger intensities of turbulence were observed in outer region of bulbous bow than those of flat plate.

Dynamic Characteristics of Buried Pipeline under Vibration Velocity of Vehicle Loads (도로 하부 통과 배관의 주행 하중 속도에 따른 진동 특성)

  • Won, Jong-Hwa;Sun, Jin-Sun;Yoo, Han-Kyu;Kim, Moon-Kyum
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Vibration velocity induced by earthquakes or external vibration sources is one of the integrity assessment indexes, and is also a representative value used to describe the amount of vibration because it is based on a proportional relationship with the damage scale. In this study, the vibration velocity criterion for structures is first examined. Then, based on the velocity criterion, an integrity assessment is performed. Burial condition is set up based on the "Highway and Local Road Design Criteria" with API 5L Gr. X65 pipeline(D=762 mm). The FE model considers DB-24 vehicle load as a time function with a varying velocity in the range of $20{\sim}160\;km/h$. Maximum vibration velocity occurs at v=80 km/h and decreases after v=80 km/h. The maximum vibration velocity of buried pipeline by DB-24 loads is about 0.034 cm/s. The velocity that occurs is in the range of allowable values for each vibration velocity criterion. The wave propagation velocity was identified based on attenuation law and the minimum value appears at vehicle velocity 80 km/h that has maximum vibration velocity.

  • PDF

Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth (소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Sohn, Jong-Ryeul;Park, Young-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.