• Title/Summary/Keyword: velocity reversal

Search Result 35, Processing Time 0.02 seconds

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

Current Structure and Variability in Gwangyang Bay in Spring 2006 (2006년 봄철 광양만 해류의 구조와 변동)

  • Lee, Jae-Chul;Kim, Jeong-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2007
  • Two monitoring buoys equipped with ADCP were deployed at the deepest positions along the trough of the central Gwangyang Bay in spring 2006 in order to study the circulation in the bay. Northward velocity is commonly dominant at both stations located in the eastern part of the channel, which supports the cyclonic circulation accompanied by the southward flow in the western part. The southern station has a distinct two-layer structure with current reversal at 14 m depth and increasing northward velocity in the lower layer to 36 m depth close to the bottom. At the northern station the northward flow becomes accelerated due to the decrease in the cross-sectional area and this northward current is dominant even in the upper layer. In the modal structure from the EOF analysis, the first mode has 74% of total variance at the northern station whereas it is 67% but the baroclinic portion increases at the southern station. The typical northward velocity is about 10 cm/s which is associated with the cyclonic circulation. Subtidal variability due to the local wind effect is negligible, but the nonlocal response associated with offshore Ekman flux by the zonal wind is found during strong wind events.

Seismic properties of Gas Hydrate using Modeling Technique (모델링 기술을 이용한 심해 Gas Hydrate의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Kim, Young-Jun;Park, Keun-Pil;Lee, Ho-Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.156-157
    • /
    • 2005
  • Gas hydrate is ice-like crystalline lattice, formed at appropriate temperature and pressure, in which gas molecules are trapped. It is worldwide popular interesting subject as a potential energy. In korea, a seismic survey for gas hydrate have performed over the East sea by the KIGAM since 1997. In this paper, we had conducted numerical and physical modeling experiments for seismic properties on gas hydrate with field data which had been acquired over the East sea in 1998. We used a finite difference seismic method with staggered grid for 2-D elastic wave equation to generate synthetic seismograms from multi-channel surface seismic survey, OBC(Ocean Bottom Cable) and VSP(Vertical Seismic Profiling). We developed the seismic physical modeling system which is simulated in the deep sea conditions and acquired the physical model data to the various source-receiver geometry. We carried out seismic complex analysis with the obtained data. In numerical and physical modeling data, we observed the phase reversal phenomenon of reflection wave at interface between the gas hydrate and free gas. In seismic physical modeling, seismic properties of the modeling material agree with the seismic velocity estimated from the travel time of reflection events. We could easily find out AVO(Amplitude Versus Offset) in the reflection strength profile through seismic complex analysis.

  • PDF

Maximising the lateral resolution of near-surface seismic refraction methods (천부 탄성파 굴절법 자료의 수평 분해능 최대화 연구)

  • Palmer, Derecke
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • The tau-p inversion algorithm is widely employed to generate starting models with most computer programs, which implement refraction tomography. This algorithm emphasises the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases which are indicative of shear zones. This study demonstrates the failure of the tau-p inversion algorithm to detect or define a major shear zone which is 50m or 10 stations wide. Furthermore, the majority of refraction tomography programs parameterise the seismic velocities within each layer with vertical velocity gradients. By contrast, the Generalized Reciprocal Method (GRM) inversion algorithms emphasise the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is confirmed by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, an analysis of the shot record amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. The major conclusion reached in this study is that while all seismic refraction operations should aim to provide as accurate depth estimates as is practical, those which emphasise the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D traverses in which the structural features can be recognised from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features such as faults which do not display any intrinsic variation or 'signature' in seismic velocities.

Effects of Grain Size Distribution on the Shear Strength and Rheological Properties of Debris Flow Using Direct Shear Apparatus (직접전단장비를 이용한 토석류의 전단강도 및 유변학적 특성에 대한 입도분포의 영향 연구)

  • Park, Geun-Woo;Hong, Won-Taek;Hong, Young-Ho;Jeong, Sueng-Won;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.7-20
    • /
    • 2017
  • In this study, effects of grain size distribution on the shear strength and rheological properties are investigated for coarse- and fine-grained soils by using direct shear apparatus. Shear strengths are estimated for fine-grained soils with the maximum particle size of 0.075 mm and coarse-grained soils with the maximum particle size of 0.425 mm and fine contents of 17% prepared at dry and liquid limit states. The direct shear tests are conducted under the relatively slow shear velocity, which corresponds to the reactivated landslide or debris flow after collapse according to the landslide classification. In addition, for the evaluation of rheological properties, residual shear strengths for both fine- and coarsegrained soils prepared under liquid limit states are obtained by multiple reversal shear tests under three shear velocities. From the relationship between residual shear strengths and shear rates, Bingham plastic viscosity and yield stress are estimated. The direct shear tests show that cohesions of fine-grained soil are greater than those of coarse-grained soil at both dry and liquid limit states. However, internal friction angles of fine-grained soil are smaller than those of coarse-grained soil. In case of rheological parameters, the plastic viscosity and yield stress of fine-grained soils are greater than those of coarse-grained soils. This study may be effectively used for the prediction of the reactivated landslide or debris flow after collapse.