• Title/Summary/Keyword: velocity extension scheme

Search Result 4, Processing Time 0.022 seconds

Level Set Based Topological Shape Optimization of Hyper-elastic Nonlinear Structures using Topological Derivatives (위상 민감도를 이용한 초탄성 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.559-567
    • /
    • 2012
  • A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.

Study on the Phase Interface Tracking Numerical Schemes by Level Set Method (Level Set 방법에 의한 상경계 추적 수치기법 연구)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.116-121
    • /
    • 2006
  • Numerical simulations for dendritic growth of crystals are conducted in this study by the level set method. The effect of order of difference is tested for reinitialization error in simple problems and authors founded in case of 1st order of difference that very fine grids have to be used to minimize the error and higher order of difference is desirable to minimize the reinitialization error The 2nd and 4th order Runge-Kutta scheme in time and 3rd and 5th order of WENO schemes with Godunov scheme are applied for space discretization. Numerical results are compared with the analytical theory, phase-field method and other researcher's level set method.

  • PDF

Investigation of Improvement Scheme for the Curve Sections on the Conventional Line Prepared for the Tilting Train Service (틸팅열차 상용화대비 기존선 곡선구간 개량방안 검토)

  • An, Gang-Yell;Lee, Chang-Hun;Yoo, Keun-Su;Kim, Joung-Tea
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.897-904
    • /
    • 2008
  • The major objective of this study is to investigate the effective improvement plan for the curve sections in the conventional lines which the tilting train runs on. In order to the speed-up of conventional lines that have many curve lines, there needs a improvement construction of substructure such as the straight or double track work and so on. But in this case, it needs to have a plenty of the cost and the period. Therefore, the tilting train which provides the high-speed service effectively in curve tracks and is operating at abroad, was been studying to be suited to natural features. So, in this paper we investigate the improvement method at the sections only where need the extension of the transition curves, and the present status of them for the effective tiling train service using results which were examined on the preceding study which was the development of track system innovation technology for speed-up of them. And we look forward to playing a decisive role as reference material for the decision of the linear fitness in order to operate effectively on the conventional lines for the commercial service of the tilting train, on the basis of checking out the sufficient condition concerned in the track alignment and the velocity which are required in the railway construction rules and the design criteria.

  • PDF

Seismic Data Processing Suited for Stratigraphic Interpretation in the Domi Basin, South Sea, Korea (남해 대륙붕 도미분지 탄성파자료의 층서해석을 고려한 전산처리)

  • Cheong, Snons;Kim, Won-Sik;Koo, Nam-Hyung;Lee, Ho-Young;Shin, Won-Chul;Park, Keun-Pil
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.603-613
    • /
    • 2010
  • The Domi Basin in the South Sea of Korea is located between the Jeju Basin and Ulleung Basins, and is characterized by several sediment sags that are interested to have formed by crustal extension. This paper aims to derive an optimized seismic data processing procedure which helps stratigraphic interpretation of the Domi Basin. In particular, our data processing flow incorporated horizon velocity analysis (HVA) and surface-relative wave equation multiple rejection (SRWEMR) to improve the quality of stack section by enhancing the continuity of reflection events and suppressing peg-leg multiples respectively. As a result of processing procedures in this study, unconformities were recognized in the stack section that defines the early and middle Miocene, Eocene-Oligocene sequences. In addition, the overall quality of the stack section was increased as essential data to investigate the evolution of the basin. The suppression of multiple resulted in the identification of the Cretaceous basement. The data processing scheme evaluated through this study is expected to improve the standardization of processing sequences for seismic data from the Domi and adjacent Sora and north-Sora Basins.