• Title/Summary/Keyword: velocity components

Search Result 871, Processing Time 0.035 seconds

Flow Structure Prediction for a Square Harbour using Various Wall Boundary Conditions (다양한 벽 경계조건을 이용한 정사각형 항구의 흐름구조 예측)

  • Kang, Yun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.151-158
    • /
    • 1999
  • A model harbour with Plan scale of $1.08{\times}1.08m$ is built on a tidal tank using a Froude relationship from a real harbour($432{\times}432m$). Velocity components are measured by a ultrasonic velocity meter and flow structure is then predicted using a 2-D depth integrated hydrodynamic model. In the finite difference model implemented in this study, various wall boundary conditions, i.e. no-slip, free-slip, partial-slip and semi-slip are used to represent turbulent diffusion terms, e.g. ${\partial}^2U_{ij}/{\partial}x^2\;or\;{\partial}^2U_{ij}/{\partial}y^2$. These conditions are focused to investigate their influence on the flow structure along the wall and basin of the harbour with aspect ratio of unity, i.e. Length/Breadth. Numerical experiments are compared with the measurements and used to analyse flow patterns in the basin during tidal cycles. It is shown from the results that no-slip closed boundary condition is the most appropriate method with respect to the location of the eddy centre, although the condition underestimates velocity components along the wall.

  • PDF

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

The Characteristics of Ultrasonic Wave Transmitted Through Drying Wood

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • The possibility of using the properties of an ultrasonic wave as a means for monitoring the moisture content of a board during drying was investigated. The ultrasonic wave signals are influenced by moisture content and other factors such as temperature, moisture gradient and coupling area. The effect of temperature was examined by measuring the transit times, amplitudes and velocities of ultrasonic waves transmitted through air, a metal bar and a board at various temperatures. The effect of a moisture gradient was studied using a model specimen composing five wood pieces of various moisture contents. The velocity and amplitude of the ultrasonic waves transmitted through air increase with temperature, while those through a metal bar and a board decrease. It was confirmed that the temperature effect is partially attributed to the change of transducer's properties. The effect of a moisture gradient on the velocity of an ultrasonic wave varies with the average moisture content of a board. As the dimension of the end face of a board increases the velocity of an ultrasonic wave increases and low frequency components more dominates than high frequency components. The transit times of ultrasonic waves transmitted through a board during kiln drying reflect the temperature steps in the drying schedule and the transducer temperatures.

LDA Measurements on the Turbulent Flow Characteristics of a Small-Sized Axial Fan (소형 축류홴의 난류유동 특성치에 대한 LDA 측정)

  • Kim, Jang-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.371-376
    • /
    • 2001
  • The operating point of a small-sized axial fan for refrigerator is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the four operating points such as $\varphi=0.1$, 0.18, 0.25 and 0.32 by using fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSA's, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is utilized for supplying particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that both the streamwise and the tangential components exist predominantly in downstream except $\varphi=0.1$ and have a maximum value at the radial distance ratio of about 0.8, but the radial component, which its velocity is relatively small, is acting role that only turns flow direction to the outside or the central part of axial fan. Moreover, all of the velocity components downstream at $\varphi=0.1$ show much smaller than those upstream due to the static pressure rise at the low-flowrate region.

  • PDF

On the elastic parameters of the strained media

  • Guliyev, Hatam H.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.53-67
    • /
    • 2018
  • The changes of parameters of pressure and velocity of propagation of elastic pressure and shear waves in uniformly deformed solid compressible media are studied within the nonclassically linearized approach (NLA) of nonlinear elastodynamics to create a new theoretical basis of the geomechanical interpretation of various groups of geophysical observational and experimental data. The cases of small and large deformations are considered while their describing by various elastic potentials, i.e., problems considering the physical and geometric nonlinearity. Convenient analytical formulae are obtained to calculate the indicated parameters in the deformed isotropic media within the nonclassical linear and nonlinear solution in the NLA. Specific numerical experiments are conducted in case of overall compression of various materials. It is shown that the method (generally accepted in the studies of mechanics of standard constructional materials) of additional linearization (relative to the pressure parameter) in the basic correlations of the NLA introduces substantial quantitative and qualitative errors into the results at significant preliminary deformations. The influences of the physical and geometric nonlinearity on the studied characteristics of the medium are large in various materials and differ qualitatively. The contribution of nonlinear components to the values of the considered parameters prevails over linear components at large deformations. When certain critical values of compression deformations in the medium are achieved, elastic waves with actual velocity cannot propagate in it. The values of the critical deformations for pressure and shear waves differ within different elastic potentials and variants of the theory of initial deformations.

Effect of Applied Magnetic Fields on Czochralski Single Crystal Growth (Czochralski 단결정 성장특성제어를 위한 자장형태에 관한 연구)

  • 김창녕;김경훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.18-30
    • /
    • 1993
  • A numerical analysis has been carried out on the Czochralski flow fields when uniform and nonuniform magnetic fields are applied. Czochralski flow fields are governed by buoyancy forces, thermocapillarity, centrifugal forces, and applied magneic fields. In this analysis, pressure and three components of velocity vectors are obtained, and circumferential electrical currents are calculated. When a uniform magnetic field is applied, all the velocity components are decreased and the circumferential electric currents near the crystal surface are increased as the magnetic field intensity is increased. In the case of a nonuniform field, the flows in a meridional plane are suppressed and the circumferential velocity is increased as the non uniformity is increased. The understanding on the Czochralski flow fields under the influence of magnetic fields can lead to the study on the behavior of the concentration of the solute and impurities.

  • PDF

Flow Characteristics of a Turbulent Pulsating Flow in a Straight Duct Connected to a Curved Duct by using an LDV (LDV에 의한 곡관 후류에 연결된 직관에서 난류맥동유동의 유동특성)

  • 손현철;이행남;박길문
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-186
    • /
    • 2003
  • In the present study, the flow characteristics of developing turbulent flows are investigated at the exit region of a square cross-sectional 180" curved duct with dimensions of 40mm$\times$40mm$\times$4000mm (height $\times$ width $\times$length). Smoke particles produced from mosquito coils were used as seed particles for the LDV measurement. Experiments were carried out to measure axial velocity profiles, shear stress distributions and entrance lengths by using an LDV system and Rotating Machinery Resolver RMR with PHASE software. Experimental results clearly show that the time-averaged Reynolds number does not affect oscillatory flow characteristics because the turbulent components tend to balance the oscillatory components in the fully developed flow region. Also, the velocity profiles are in good agreement with 1/7power law such as the results of steady turbulent flows. The turbulent intensity linearly increases along the walls and is slightly higher, especially in the period of deceleration. On the other hand, the LDV measurements show that shear stress values in slightly higher in the period of deceleration due to the flow characteristics in the exit region. The entrance length where flows become stable appears at the point that is 40 times the length of hydraulic diameter.eter.

Velocity Measurement Technique in a Narrow Passage by Hot-wire Anemometer (열선유속계를 이용한 좁은 유로 내 유속 측정법)

  • Kim, Won-Kap;Han, Seong-Ho;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2007
  • It was noted by the several researchers that the voltage outputs in response to a single yawed hot-wire sensor in a flow perpendicular to the axis deviate from the theoretical voltage output by King's law and Jorgensen's relation. This study noticed that the calibration coefficients of original Grande's method are not constant and fairly sensitive to the radial angle (${\alpha}_{R}$). For more accuracy, this study interpolated the parameters of the Grande relation as a function of radial angle and compared velocity components with ones by Jorgensen and original Grande relation in the calibration jet flow. Finally, as a test case, 3-dimensional turbulent flows of the inlet plane of 180 degree bend are measured and compared the velocity components by above three methods and showed the characteristics of the flows.

Observability Analysis of Alignment Errors in GPS/INS

  • Lee Mun Ki;Hong Sinpyo;Lee Man Hyung;Kwon Sun-Hong;Chun Ho-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1253-1267
    • /
    • 2005
  • Misalignment can be an important problem in the integration of GPS/INS. Observability analysis of the alignment errors in the integration of low-grade inertial sensors and multi-antenna GPS is presented in this paper. A control-theoretic approach is adopted to study the observability of time-varying error dynamics models. The relationship between vehicle motions and the observability of the errors in the lever arm and relative attitude between GPS antenna array and IMU is given. It is shown that alignment errors can be made observable through maneuvering. The change of acceleration makes the components of the relative attitude error that are orthogonal to the direction of the acceleration change observable. The change of angular velocity makes the components of the lever arm error that are orthogonal to the direction of the angular velocity observable. The motion of constant angular velocity has no influence on the estimation of the lever arm.

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF