• Title/Summary/Keyword: velocity components

Search Result 868, Processing Time 0.03 seconds

CO STUDY OF THE H II REGION SHARPLESS 301

  • JUNG JAE HOON;LEE JUNG-Kyu;YOON TAE SEOG;KANG YONG HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.157-166
    • /
    • 2001
  • The molecular cloud associated with the H II region S301 has been mapped in the J = 1-0 transitions of $^{12}CO$ and $^{13}CO$ using the 13.7 m radio telescope of Taeduk Radio Astronomy Observatory. The cloud is elongated along the north-south direction with two strong emission components facing the H II region. Its total mass is $8.7 {\times} 10^3 M{\bigodot}$. We find a velocity gradient of the molecular gas near the interface with the optical H II region, which may be a signature of interaction between the molecular cloud and the H II region. Spectra of CO, CS, and HCO+ exhibit line splitting even in the densest part of the cloud and suggests the clumpy structure. The radio continuum maps show that the ionzed gas is distributed with some asymmetry and the eastern part of the H II region is obscured by the molecular cloud. We propose that the S301 H II region is at the late stage of the champagne phase, but the second generation of stars has not yet been formed in the postshock layer.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Ko, Myung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.198-204
    • /
    • 2001
  • The shot peening is largely used for a surface treatment of metallic components where small spherical pellets called shots are blasted onto the surface with velocities up to 100 m/s. This treatment leads to improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance I the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is the measurement by X-ray diffractometer only. Despite the importance to automobile ad aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude ad distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

Stellar and Ionized Gas Kinematics of Blue-cored Early-type Dwarf Galaxies in the Virgo Cluster

  • Chung, Jiwon;Rey, Soo-Chang;Kim, Suk;Lee, Youngdae;Lee, Woong;Sung, Eon-Chang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49.3-50
    • /
    • 2015
  • Early-type dwarf galaxy (ETDG), the most abundant galaxy type in clusters, were recently shown to exhibit a wide variety in their properties. Particularly, the presence of blue cores in some ETDGs supports the scenario of late-type galaxy infall and subsequent transformation into red, quiescent ETDGs. While several transformation mechanisms for these ETDGs with blue core within cluster environment have been proposed, all these processes are able to explain only some of the observational properties of ETDGs such as stellar populations and structural parameters. In this context, internal kinematic properties of blue-cored ETDGs provide the most crucial evidence to discriminate different processes for the formation of these galaxies. We present a kinematic analysis of two blue-cored ETDGs in the Virgo cluster based on long-slit data obtained from Gemini Multi-Object Spectrographs (GMOS) observations. We find that the observed galaxies show kinematically decoupled sub-components in the velocity profile such as discontinuity or counter-rotating component. We discuss possible scenarios of formation of these transitional galaxies.

  • PDF

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee K. Y.;Kim H. M.;Han Y. M.;Lee S. Y.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • Most of modem aerospace gas turbines must be operated at a gas temperature which is several hundreds of degrees higher than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and in the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are categorized as 'Impinging Cooling Method' and 'Vortex Cooling Method'. Specially, research of new cooling system(Vortex Cooling Method) that overcomes inefficiency of film cooling and limitation of space. The focus of new cooling system that improves greatly cooling efficiency using less amount of cooling air on surface heat transfer elevation. Therefore, in this study, a numerical analysis has been peformed for characteristics of flow and heat transfer in the swirl chamber and compared with the flow measurements by LDV. Especially, for understanding high heat transfer efficiency in the vicinity of wall, we considered flow structure, vortex mechanism and heat transfer characteristics with variation of the Reynolds number.

ANALYSIS ON FLOW FIELDS IN AIRFLOW PATH OF CONCRETE DRY STORAGE CASK USING FLUENT CODE (FLUENT를 활용한 콘크리트 건식 저장용기 공기유로 내부 유동장 해석)

  • Kang, G.U.;Kim, H.J.;Cho, C.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.47-53
    • /
    • 2016
  • This study investigated natural convection flow behavior in airflow path designed in concrete dry storage cask to remove the decay heat from spent nuclear fuels. Using FLUENT 16.1 code, thermal analysis for natural convection was carried out for three dimensional, 1/4 symmetry model under the normal condition that inlet ducts are 100% open. The maximum temperatures on other components except the fuel regions were satisfied with allowable values suggested in nuclear regulation-1536. From velocity and temperature distributions along the flow direction, the flow behavior in horizontal duct of air inlet and outlet duct, annular flow-path and bent pipe was delineated in detail. Theses results will be used as the theoretical background for the composing of airflow path for the designing of passive heat removal system by understanding the flow phenomena in airflow path.

An Experimental Study About The Intermittent Flow Field in The Transition Region of a Turbulent Round Jet (발달하는 원형제트의 간헐적 유동에 관한 실험적 연구)

  • 김숭기;조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.230-240
    • /
    • 1990
  • An exprimental research has been carried out to find the intermittent flow pattern in the transition region of a turbulent round jet in order to elucidate detailed turbulence structure and to accumulate basic data necessary for computational turbulence modelling. Turbulent signals were processed digitally to obtain conventional or conditional velocity components. The high-order conditional correlations obtained in this study showed similar trends as those of other free shear flows. It was found that the non-turbulent fluid contributes negligibly to the turbulent kinetic energy production and its diffusive transport and that the diffusion by bulk convection has the same order of magnitude as the gradient diffusion in the free boundary region. The statistical analyses such as flatness factor, skewness factor and probability density functions of turbulent and non-turbulent zone durations have also been performed.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

A Study of Estuarine Flow using the Roving ADCP Data

  • Kang, Ki-Ryong;Iorio, Daniela Di
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.81-90
    • /
    • 2008
  • A study of estuarine flows during a neap tide was performed using 13-hour roving acoustic Doppler current profiles (ADCP) and conductivity-temperature-depth (CTD) profiles in the Altamaha River estuary, Georgia, U.S.A. The least-squared harmonic analysis method was used to fit the tidal ($M_2$) component and separate the flow into two components: the tidal and residual ($M_2$-removed) flows. We applied this method to depth-averaged data. Results show that the $M_2$ component demonstrates over 95% of the variability of observation data. As the flow was dominated by the $M_2$ tidal component in a narrow channel, the tidal ellipse distribution was essentially a back-and-forth motion. The amplitude of $M_2$ velocity component increased slightly from the river mouth (0.45 m/sec) to land (0.6 m/sec) and the phase showed fairly constant values in the center of the channel and rapidly decreasing values near the northern and southern shoaling areas. The residual flow and transport calculated from depth-averaged flow shows temporal variability over the tidal time scale. Strong landward flows appeared during slack waters which may be attributed to increased baroclinic forcing when turbulent mixing decreases.

Prediction of Interior Noise Caused by Tire Based on Sound Intensity and Acoustic Source Quantification (공기 기인 소음 분석과 음향 인텐시티법을 이용한 타이어에 의한 실내 소음 예측)

  • Shin, Kwang-Soo;Lee, Sang-Kwon;Hwang, Sung-Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2013
  • Tire noise is divided into a road noise(structure-borne noise) and a pattern noise(air-borne noise). Whilst the road noise is caused by the structural vibration of the components on the transfer path from tire to car body, the pattern noise is generated by the air-pumping between tire and road. In this paper, a practical method to estimate the pattern noise inside a passenger car is proposed. The method is developed based on the sound intensity and airborne source quantification. Sound intensity is used for identifying the noise sources of tire. Airborne source quantification is used for estimating the sound pressure level generated by each noise source of a tire. In order to apply the airborne source quantification to the estimation of the sound pressure, the volume velocity of each source should be obtained. It is obtained by using metrics inverse method. The proposed method is successfully applied to the evaluation of the interior noises generated by four types of tires with different pattern each other.