• 제목/요약/키워드: velocity

검색결과 23,138건 처리시간 0.035초

Effects of Isokinetic Eccentric Training on Lower Extremity Muscle Activation and Walking Velocity in Stroke Patients

  • Park, Seung-Kyu;Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • 제27권4호
    • /
    • pp.190-195
    • /
    • 2015
  • Purpose: The aim of this study was to determine the effects of isokinetic eccentric training (IET) on lower extremity muscle activation and walking velocity according to slow velocity and fast velocity of isokinetic eccentric training in stroke patients. Methods: Thirty subjects were randomly divided into three groups: experimental group I (n=10), group II (n=10), and control group III (n=10). Each group was provided intervention under three conditions, as follows: isokinetic eccentric training + slow velocity (group I), isokinetic eccentric training + fast velocity (group II), and sit to stand training (group III). The training program was conducted for eight weeks (five times per week; 30 minutes per day). Subjects were measured on lower extremity muscle (vastus lateralis, vastus medialis, gastrocnemius) activation and walking velocity. Analysis of covariance (ANCOVA) were performed for comparison of lower extremity muscle activation and walking velocity between different intervention methods. Results: Significant difference in lower extremity muscle activation and walking velocity was observed in experimental group I and group II compared with the control group III (p<0.01). Results of post-hoc analysis showed a significant in lower extremity muscle activation and walking velocity in group I compared with group II and group III. Conclusion: Findings of this study suggest that slow velocity and fast velocity using isokinetic eccentric training may have a beneficial effect on improvement of lower extremity muscle activation and walking velocity in stroke patients.

엔트로피 개념을 이용한 제주도 상시하천의 평균유속분포 추정 (Mean Velocity Distribution of Natural Stream using Entropy Concept in Jeju)

  • 양세창;양성기;김용석
    • 한국환경과학회지
    • /
    • 제28권6호
    • /
    • pp.535-544
    • /
    • 2019
  • We computed parameters that affect velocity distribution by applying Chiu's two-dimensional velocity distribution equation based on the theory of entropy probability and acoustic doppler current profiler (ADCP) of Jungmun-stream, Akgeun-stream, and Yeonoe-stream among the nine streams in Jeju Province between July 2011 and June 2015. In addition, velocity and flow were calculated using a surface image velocimeter to evaluate the parameters estimated in the velocity observation section of the streams. The mean error rate of flow based on ADCP velocity data was 16.01% with flow calculated using the conventional depth-averaged velocity conversion factor (0.85), 6.02% with flow calculated using the surface velocity and mean velocity regression factor, and 4.58% with flow calculated using Chiu's two-dimensional velocity distribution equation. If surface velocity by a non-contact velocimeter is calculated as mean velocity, the error rate increases for large streams in the inland areas of Korea. Therefore, flow can be calculated precisely by utilizing the velocity distribution equation that accounts for stream flow characteristics and velocity distribution, instead of the conventional depth-averaged conversion factor (0.85).

마찰을 고려한 이중 오프셋 등속조인트의 축력 해석에 관한 연구 (Analytic Study on the Axial Forces of a Double Offset Constant Velocity Joints in Consideration of Friction Effect)

  • 배병철
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.120-127
    • /
    • 2008
  • The constant velocity joint(CVJ) used for transmitting torque to the front wheels is an important part in automotive drive system. There are several types of constant velocity joints. Typically, they are classified by fixed and plunging constant velocity joints. The axial force generated in plunging constant velocity joints influences significantly the noise, vibration and harshness. For heaps of time, many constant velocity joint markers have been studying and developing a valid method to reduce the axial force and extensive tests have been carried out on rigs. This paper presents the analysis method to predict the axial force of a double offset constant velocity joint(DOJ), a kind of plunging constant velocity joint, and the influence of ball-cage dimension tolerance on the axial force.

동축류 속도에 따른 프로판 제트의 부상화염 특성에 관한 수치해석적 연구 (Numerical Study on the Effect of Coflow Jet Velocity on Lifted Flame in Propane Jet)

  • 도재일;김길남;천강우;김준홍;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.215-220
    • /
    • 2005
  • When the fuel jet velocity is smaller than coflow velocity, the trend of decreasing liftoff height of highly diluted propane lifted flame with coflow velocity is observed experimentally. To investigate the mechanism of decreasing liftoff height with coflow velocity, lifted flames in propane jet has been studied numerically. Using one-step overall reaction mechanism the liftoff heights have been calculated for four cases of coflow velocity. The simulation agrees qualitatively with experimental observation that the liftoff height decreases with coflow velocity. As coflow velocity increases, the streamlines between nozzle and lifted flame diverge in radial direction due to the difference of momentum between coflow jet and fuel jet such that the local flow velocity ahead of lifted flame base decreases resulting in decrease of the liftoff height with coflow velocity.

  • PDF

함정용 레이더의 표적 속도 보상 방법 (A Method of Velocity Compensation of Target for the Naval Radar System)

  • 조원민
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.508-515
    • /
    • 2009
  • In the naval environment, a naval radar has many obstructions of velocity, such as rotation and velocity of ship. In the common situation, the rotations such as roll, pitch and yaw don't influence the velocity of the target. But because the naval radar is located on the top of the mast, there is some influence to the target velocity. When we trace the target, radar controller doesn't use hits whose doppler banks are zero. So, we must compensate the target velocity for the velocity error. This paper suggests a method of velocity compensation of target by the velocity vector and how to apply to the stack beam radar if we don't know the height of the target.

저 분해능 엔코더를 사용한 정밀 속도 제어 (Precise Velocity Control at Low Speed with a Low Resolution Encoder)

  • 서기원;강현재;이충우;정정주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.140-142
    • /
    • 2007
  • This paper presents an effective method of precise velocity control at low speed with a low resolution encoder. Multirate observer to estimate the velocity at every DSP control period is used except a constant velocity mode. The observer corrects the estimation error when detects pulse signal. Unlike the conventional methods, the multirate estimator is stable at a low speed. However, the multirate estimator shows ripples at a constant velocity. Thus, in this paper we use a velocity prediction method which uses the present velocity from the previous average velocity to reject the ripple. In a summary, at a constant speed mode, the predicted velocity is used. Otherwise, the estimated velocity by the multirate obvserver is used. The effectiveness of the multirate observer and ripple rejection at low speed is verified through various simulations.

  • PDF

The Effects of Upper Limb, Trunk, and Pelvis Movements on Apkubi Momtong Baro Jireugi Velocity in Taekwondo

  • Yoo, Si-Hyun
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.273-284
    • /
    • 2016
  • Objective: The purpose of this study was to investigate effects of upper limb, trunk, and pelvis kinematic variables on the velocity of Apkubi Momtong Baro Jireugi in Taekwondo. Method: Twenty Taekwondo Poomsae athletes (age: $20.8{\pm}2.2years$, height: $171.5{\pm}7.0cm$, body weight: $66.2{\pm}8.0kg$) participated in this study. The variables were upper limb velocity and acceleration; trunk angle, angular velocity, and angular acceleration; pelvis angle, angular velocity, and angular acceleration; and waist angle, angular velocity, and angular acceleration. Pearson's correlation coefficient was calculated for Jireugi velocity and kinematic variables; multiple regression analysis was performed to investigate influence on Jireugi velocity. Results: Angular trunk acceleration and linear upper arm punching acceleration had significant effects on Jireugi velocity (p<.05). Conclusion: We affirmed that angular trunk acceleration and linear upper arm punching acceleration increase the Jireugi velocity.

콘크리트의 P파 속도에 영향을 주는 인자에 관한 연구 (A Study on Factors Influencing P-wave Velocity of Concrete)

  • 이광명;이회근;김동수;김지상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.725-730
    • /
    • 1998
  • Recently, non-destructive tests are getting popular in evaluating concrete properties without braking specimens. Among several NDT methods, P-wave velocity measurement technique has been widely used to evaluate the stiffness and strength of concrete. The purpose of this study is to investigate factors influencing P-wave velocity measured by impact-resonant method and ultrasonic pulse velocity method, such as moisture content of concrete, existence and size of coarse aggregates, sensor and sampling rate. Test results show that rod-wave velocity measured by impact-resonant method and ultrasonic pulse velocity are significantly affected by the moisture content of concrete, i.e., the lower moisture content, the lower velocity. Moisture content influences rod-wave velocity stronger than ultrasonic pulse velocity. Rod-wave velocity is faster in concrete than in mortar and is also faster in concrete containing small size aggregates. Sensor and sampling rate have little influence on velocity.

  • PDF

유전자 알고리즘을 이용한 안정적인 미동 탐색 제어를 위한 속도 외란 추정 시스템 (A Velocity Disturbance Estimation System for the Stable Fine Seek Control Using a Genetic Algorithm)

  • 진경복;신진호;이문노
    • 반도체디스플레이기술학회지
    • /
    • 제11권3호
    • /
    • pp.13-18
    • /
    • 2012
  • This paper presents a velocity disturbance estimation system for the stable fine seek control using a genetic algorithm. To estimate accurately the velocity disturbance in spite of the uncertainties of fine actuator, the system utilizes an objective function to minimize the differences of the frequency characteristics between the nominal velocity control loop and the extremal velocity control loops. The objective function is considered by applying a genetic algorithm and the velocity disturbance is estimated by the measurable velocity, the adjusted velocity controller, and the fine actuator model. The proposed velocity disturbance estimation system is applied to the fine seek control system of a DVD recording device and is evaluated through the experimental results.

고해상도 Bootstrapped Differential Semblance를 이용한 자동 속도분석 (Automatic Velocity Analysis by using an High-resolution Bootstrapped Differential Semblance Method)

  • 최형욱;변중무
    • 지구물리와물리탐사
    • /
    • 제16권4호
    • /
    • pp.225-233
    • /
    • 2013
  • 효율적이고 객관적인 NMO 속도분석을 위해 사용되는 자동 속도분석의 정확성은 속도 빛띠의 속도 해상도에 많은 영향을 받는다. 본 연구에서는 고해상도 BDS (high-resolution Bootstrapped Differential Semblance)를 이용하여 속도 빛띠를 구성하고, 이를 이용하여 공통 중간점 모음 별로 병렬적으로 자동 속도분석을 수행하는 모듈을 개발하였다. 또한 이 고해상도 BDS를 이용하는 자동 속도분석 모듈의 속도분석 결과를 BDS (Bootstrapped Differential Semblance)를 이용한 자동 속도분석의 결과와 비교하였다. 수평층을 포함한 속도모델로부터 얻은 합성 탄성파 탐사자료를 생성하고 이를 이용하여 개발된 모듈을 검증한 결과 본 연구를 통해 개발된 모듈이 좀 더 정확한 속도를 추정하는 것을 확인하였다. 또한 현장자료에 개발된 모듈을 적용하여 이벤트의 연속성이 향상된 공통 중간점 겹쌓기 단면을 구할 수 있는 NMO 속도를 추정하였다.