• Title/Summary/Keyword: vein deposit

Search Result 102, Processing Time 0.025 seconds

Identifying potential mineral resources using digital imagery

  • Cranfield, L.C.;Vohora, V.K.;Donoghue, S.L.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.254-256
    • /
    • 2003
  • A total of one hundred and twenty three goldbearing mineral deposits in the Charters Towers area west of Townswille, Queensland, Australia were initially classified into four named and unnamed separate vein styles, with different trends and alteration patterns, a breccia-style deposit and placer gold deposits. The area has vein deposits in Ordovician and Silurian granitoids and breccia-style in the Carboniferous volcanics. In this paper a modeling of these deposits is described using geological mapping, landscape analysis and digital imagery (Landsat TM and geophysics) to improve the classification and identification of possible new target for exploration.

  • PDF

Geochemistry and Genetic Environments of the Daejang Vein Deposits (대장광상(大藏鑛床)의 지화학(地化學) 및 생성환경(生成環境) 연구(硏究))

  • Shin, Hong-Ja;Kim, Moon-Young;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.61-75
    • /
    • 1987
  • The Daejang mine is one of the representatives of Cu-Pb-Zn-(Ag) vein deposit related genetically to late Cretaceous granitoid in Korea. Sericite from an alteration halo of the mine yielded a K-Ar date of $95{\pm}3.5Ma$. Based on macrostructures of vein filling, three major mineralization stages (I, II and III) are distinguished by tectonic breaks. Major ore constituents are arsenopyrite, pyrite, pyrrhotite, sphalerite, chalcopyrite, galena, boulangerite, with small amounts of Ag-bearing tetrahedrite, pyrargyrite, native bismuth, marcasite, siderite, ankerite, gudmundite and calcite. Characteristic feature of each mineralization stage and compositional variation of sphalerite and arsenopyrite are discussed in relation to the genetic environments. The FeS contents of sphalerites are 20.5~14.9 mole % in stage I, 17.9~11.9 mole % in stage IIA, 17.0~9.2 mole % in stage IIB, and 6.9~4.7 mole % in stage III. Their results are indicative of decreasing FeS contents during mineralization process in sphalerite coexisting with sulfur-rich sulfide assemblages, such as monoclinic pyrrhotite and pyrite, and is agreement with the conclusions shown by Scott and Kissin(1973). The composition of arsenopyrite decrease also in As content from stage I to stage III, and the compositional variation correlate with position of the associated minerals in the paragenesis. Temperature and pressure of the mineralization are determined as $250{\sim}430^{\circ}C$ and 4.0~0.3kb respectively, based on the chemistry of the minerals.

  • PDF

열수변질 점토맥과 산사태

  • Jo, Hwan-Ju;Jeong, Gyeong-Mun;Jo, Ho-Yeong
    • Mineral and Industry
    • /
    • v.29
    • /
    • pp.56-66
    • /
    • 2016
  • In Korea, where hydrothermal alteration zones are widely distributed, clay veins formed by hydrothermal alteration processes on natural slopes or artificial slopes can play an important role in the slope stability. When the surface water infiltrates the ground where the clay vein exists, the pore water pressure in the ground can be locally increased due to impermeable properties of clay minerals. Infiltration of the surface water induces the increase in the pore water pressure, which can cause erosion of the fine clay particles. The eroded clay particles flow and deposit in an area where the flow velocity is slowed down. Where clay minerals are deposited, ground water can leak due to an increase in local pore pressures, which can cause slope failure. In this paper, studies related to hydrothermal clay vein and landslide are introduced.

  • PDF

Occurrence and Chemical Composition of Dolomite from Komdok Pb-Zn Deposit (검덕 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.107-120
    • /
    • 2021
  • The Komdok Pb-Zn deposit, which is the largest Pb-Zn deposit in Korea, is located at the Hyesan-Riwon metallogenic zone in Jiao Liao Ji belt included Paleoproterozoic Macheolryeong group. The geology of this deposit consists of Paleoproterozoic metasedimentary rocks, Jurassic Mantapsan intrusive rocks and Cenozoic basalt. The Komdok deposit which is a SEDEX type deposit occurs as layer ore and vein ore in the Paleoproterozoic metasedimentary rocks. Based on mineral petrography and paragenesis, dolomites from this deposit are classified four types (1. dolomite (D0) as hostrock, 2. early dolomite (D1) associated with tremolite, actinolite, diopside, sphalerite and galena from amphibolite facies, 3. late dolomite (D2) associated with talc, calcite, quartz, sphalerite and galena from amphibolite facies, 4. dolomite (D3) associated with white mica, chlorite, sphalerite and galena from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.20Mg0.80-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D0), Ca1.00-1.02M0.97-0.99Fe0.00-0.01Zn0.00-0.02(CO3)2(D1), Ca0.99-1.03Mg0.93-0.98Fe0.01-0.05Mn0.00-0.01As0.00-0.01(CO3)2(D2) and Ca0.95-1.04Mg0.59-0.68Fe0.30-0.36Mn0.00-0.01 (CO3)2(D3), respectively. It means that dolomites from Komdok deposit have higher content of trace elements (FeO, MnO, HfO2, ZnO, PbO, Sb2O5 and As2O5) compared to the theoretical composition of dolomite. These trace elements (FeO, MnO, ZnO, Sb2O5 and As2O5) show increase and decrease trend according to paragenetic sequence, but HfO2 and PbO elements no show increase and decrease trend according to paragenetic sequence. Dolomites correspond to Ferroan dolomite (D0, D1 and D2), and Ferroan dolomite and ankerite (D3), respectively. Therefore, 1) dolomite (D0) as hostrock was formed by subsequent diagenesis after sedimentation of Paleoproterozoic (2012~1700 Ma) silica-bearing dolomite in the marine evaporative environment. 2) Early dolomite (D1) was formed by hydrothermal metasomatism origined metamorphism (amphibolite facies) associated with intrusion (1890~1680 Ma) of Paleoproterozoic Riwon complex. 3) Late dolomte (D2) was formed from residual fluid by a decrease of temperature and pressure. and dolomite (D3) in quartz vein was formed by intrusion (213~181 Ma) of Jurassic Mantapsan intrusive rocks.

A Survey Report on the Polymetallic Mineralization in the Oyon Mineralized District, Central Peru (페루 중부 오욘 다중금속 광화작용에 대한 조사보고)

  • Lee, Jaeho;Kim, Injoon;Nam, Hyeong-tae
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • The surveyed mines are located in a polymetallic vein, replacement, and skarn mineral district in the central Andes of Peru. Iscaycruz, which includes underground and open pit mines that produce zinc and lead concentrates, was the largest mineral deposit of an important group of base metal deposits in the Andes of central Peru. The deposits are sub-vertical seams of polymetallic ores(Zn, Cu, and Pb). These seams are hosted by Jurassic and Cretaceous sedimentary rock formation. The intrusion of igneous rocks in these formations originated metallic deposits of metasomatic and skarn types. The Raura mine is composed of polymetallic deposit of veins and replacement orebodies. The main sedimentary unit in the area is Cretaceous Machay Limestone. The Raura depression contains several orebodies each with different mineralization: predominantly Pb-Zn bearing Catuvo orebody; Ag-rich galena-bearing Lake Ninacocha orebody; Cu-Ag bearing Esperanza and Restauradora orebody. Huaron is a hydrothermal polymetallic deposit of silver, lead, zinc, and copper mineralization hosted within structures likely related to the intrusion of monzonite dikes, principally located within the Huaron anticline. Mineralization is encountered in veins parallel to the main fault systems, in replacement bodies known as "mantos" associated with the calcareous sections of the conglomerates and other favourable stratigraphic horizons, and as dissemination in the monzonitic intrusions at vein intersections.

Genetic Environments of Au-Ag-bearing Geumhwa Hydrothermal Vein Deposit (함 금-은 금화 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2021
  • The Geumhwa Au-Ag deposit is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into two stages (stage I and II) by major tectonic fracturing. Stage II is economically barren. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early substage, marked by deposition of pyrite with minor wolframite; middle substage, characterized by introduction of electrum and base-metal sulfides with Cu-As and/or Cu-Sb sulfosalts; late substage, marked by hematite and Bi-sulfosalts with secondary minerals. Changes in vein mineralogy reflect decreases in temperature and sulfur fugacity with a concomitant increase in oxygen fugacity. Fluid inclusion data indicate progressive decreases in temperature and salinity within each substage with increasing paragenetic time. During the early portion of stage I, high-temperature (≥410℃), high-salinity fluids (up to ≈44 equiv. wt. % NaCl) formed by condensation during decompression of a magmatic vapor phase. During waning of early substage, high-temperature, high-salinity fluids gave way to progressively cooler, more dilute fluids associated with main Au-Ag mineralization (middle) and finally to ≈180℃ and ≥0.7 equiv. wt. % NaCl fluids associated with hematite and sulfosalts (± secondary) mineralization (late substage). These trends are interpreted to indicate progressive mixing of high- and medium to low-salinity hydrothermal fluids with cooler, more dilute, oxidizing meteoric waters. The Geumhwa Au-Ag deposit may represent a vein-type system transitional between porphyry-type and epithermal-type.

Geology and Ore Deposits of Kubong Gold Mine (구봉광산(九峯鑛山)의 지질(地質)과 광상(鑛床))

  • Cheon, Chan Kyu;Oh, Mihn Soo
    • Economic and Environmental Geology
    • /
    • v.3 no.3
    • /
    • pp.169-176
    • /
    • 1970
  • Kubong Gold Mine is located in Kuryongri, Sayang-myun, Chungyang-gun, Choongchung-Namdo.(latitude $36^{\circ}24^{\prime}N$. longitude $126^{\circ}45^{\prime}30^{{\prime}{\prime}}E$) The mine was begun to work soon after the inhabitants of this village had accidently discovered the outcrops in April 1908. It is one of the largest gold mines in Korea which produces 4,500 tons of crude ore a month. The geology in the area consists of granitic gneiss, banded gneiss, augen-gneiss, mica schist, limesilicate of Pre-Cambrian series and sedimentary rocks(sandstones & conglomerates) of Daedong series. Basic dikes intrude the former formations. The country rock of the ore deposit is a group of the metamorphic rocks mentioned above. Gold-silver bearing quartz vein contains small amounts of pyrite, chalcopyrite, arsenopyrite, galena and sphalerite in which gold and silver occur as native state. The vein strikes $N30^{\circ}{\sim}60^{\circ}E$ and dips $20^{\circ}{\sim}50^{\circ}S$ and the average width of the vein is estimated 1 to 1.5m. Average grade of ore is Au:6~8gr/t and Ag:5~6gr/t. The ore shoot continues from the outcrop to the depth of -1760ML with dip of $20{\sim}25^{\circ}$ and strike extension reaches to 400m at the depth of -1440 ML and to more or less 200m at below. Highgrade of ore vein was found at the lowest level of the ore shoot at the time of recent field survey at the end of August 1970. Its average grade was estimated as Au:20gr/t and its width 1~2.5M in average. A series of futher prospecting for other new ore shoot or parallel veins are urgent and crosscut prospecting along the horizontal level is strongly recommended.

  • PDF

Alteration and Mineralization in the Xiaoxinancha Porphyry Copper Deposit, Yianbin, China: Fluid Inclusion and Sulfur Isotope Study (중국 연변 쇼시난차 반암동 광상의 광화작용 및 변질작용: 유체포유물 및 황동위원소 연구)

  • Seong-Taek Yun;Chil-Sup So;Bai-Lu Jin;Chul-Ho Heo;Seung-Jun Youm
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • The Xiaoxinancha Cu-Au deposit in the Jilin province, located in NNE 800 km of Beijing, is hosted by diorite. The ore mineralization of Xiaoxinancha Cu-Au deposit show a stockwork occurrence that is concentrated on the potassic and phyllic alteration zones. The Xiaoxinancha Cu-Au deposit in the south is being mined with its reserves grading 0.8% Cu, 3.64 g/t Au and 16.8 g/t Ag and in the north, grading 0.63% Cu, 3.80 g/t Au and 6.8 glt Ag. The alteration assemblage occurs as a supergene blanket over deposit. Hydrothermal alteration at the Xiaoxinancha Cu-Au deposit is centered about the stock and was extensively related to the emplacement of the stock. Early hydrothermal alteration was dominantly potassic and followed by propylitic alteration. Chalcocite, often associated with hematite, account for the ore-grade copper, while chalcopyrite, bornite, quartz, epidote, chlorite and calcite constitute the typical gangue assemblage. Other minor opaque phases include pyrite, marcasite, native gold, electrum, hessite, hedleyite, volynskite, galenobismutite, covellite and goethite. Fluid inclusion data indicate that the formation of this porphyry copper deposit is thought to be a result of cooling followed by mixing with dilute and cooler meteoric water with time. In stage II vein, early boiling occurred at 497$^{\circ}$C was succeeded by the occurrence of halite-bearing type III fluid inclusion with homogenization temperature as much as 100$^{\circ}$C lower. The salinities of type 1II fluid inclusion in stage II vein are 54.3 to 66.9 wt.% NaCI + KCI equiv. at 383$^{\circ}$ to 495$^{\circ}$C, indicating the formation depth less than 1 km. Type I cupriferous fluids in stage III vein have the homogenization temperatures and salinity of 168$^{\circ}$ to 365$^{\circ}$C and 1.1 to 9.0 wt.% NaCI equiv. These fluid inclusions in stage III veins were trapped in quartz veins containing highly fractured breccia, indicating the predominance of boiling evidence. This corresponds to hydrostatic pressure of 50 to 80 bars. The $\delta$$^{34}S$ value of sulfide minerals increase slightly with paragenetic time and yield calculated $\delta$$^{34}S_{H2S}$ values of 0.8 to 3.7$\textperthousand$. There is no mineralogical evidence that fugacity of oxygen decreased, and it is thought that the oxygen fugacity of the mineralizing fluids have been buffered through reaction with magnetite. We interpreted the range of the calculated $\delta$$^{34}S_{H2S}$ values for sulfides to represent the incorporation of sulfur from two sources into the Xiaoxinancha Cu-Au hydrothermal fluids: (1) an isotopically light source with a $\delta$$^{34}S$ value of I to 2$\textperthousand$, probably a Mesozoic granitoid related to the ore mineralization. We can infer from the fact that diorite as the host rock in the Xiaoxinancha Cu-Au deposit area intruded plagiogranite; (2) an isotopically heavier source with a $\delta$$^{34}S$ value of > 4.0$\textperthousand$, probably the local porphyry.

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.

Mineralogy and Geochmistry of the Sanjeon Au-Ag Deposit, Wonju Area, Korea (산전 금-은 광상에 관한 광물 및 지화학적 연구)

  • Se-Hyun Kim
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.445-454
    • /
    • 1999
  • The Sanjeon Au-Ag deposit consists of three subparallel hydrothermal quartz-calcite veins which filled fault-related fractures (generally $N20^{\circ}$ to 35"W-trending and $70^{\circ}$ to $80^{\circ}$ SW-dipping) within quartz porphyry. The vein mineralization shows an apparent variation of mineral assemblages with paragenetic time: (1) early, white quartz + pyrite + arsenopyrite + brown sphalerite, (2) middle, white (vein) to clear quartz (vug) + base-metal sulfides + electrum + argentite, (3) late, calcite + pyrite + native silver. Mineralogic and fluid inclusion data indicate that gold-silver minerals were deposited at temperatures from 2l $0^{\circ}$ to $250^{\circ}$ with salinities of 4 to 5 wt. % equiv. NaCl and log fS2 values from -14.0 to -12.2 atm. The linear relationship between homogenization temperature and salinity data indicates that gold-silver deposition was a result of meteoric water mixing. Ore mineralization occurred at pressure conditions of about 70 bars, which corresponds to the mineralization depths of about 260 m to 700 m. There is a remarkable decrease of the calculated 1)180 values of water from 1.3 to -9.7%0 in hydrothermal fluid with increasing paragenetic time. This indicates a progressive increase of meteoric water influx in the hydrothermal system at the Sanjeon deposit. Oxygen-hydrogen, sulfur, and carbon isotope values of hydrothermal fluids indicate that the ore mineralization was formed largely from meteoric waters with the contribution of sulfur and carbon from a deep igneous source.

  • PDF