• 제목/요약/키워드: vehicle trajectory

검색결과 386건 처리시간 0.024초

융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계 (Navigation System of UUV Using Multi-Sensor Fusion-Based EKF)

  • 박영식;최원석;한성익;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

수중운동체의 잠수심도에 따른 수평면내 조종성능 변화에 대한 실험적 연구 (An Experimental Study of the Submerged Depth Effect on the Manoeuvrability in a Horizontal Plane of an Underwater Vehicle)

  • 설동명;이기표;여동진
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.551-558
    • /
    • 2005
  • In this paper, horizontal manoeuvrability of an underwater vehicle near free surface was investigated. Planar Motion Mechanism(PMM) tests were performed at the shallow depth within 4.5 times of vehicle's diameter. Hydrodynamic coefficients related to the horizontal movement were estimated from the measured data using Least SQuare(LS) method and analyzed at each submerged depth. Furthermore, horizontal dynamic stability, trajectory of turning and zigzag test were investigated for the various depths. As underwater vehicle is positioned nearer to the free surface, forces increase and moment decreases. Tested model was found to be stable only at the depth 0.5 times of vehicle's diameter.

차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교 (Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement)

  • 윤문영;백승환;최정광;부광석;김흥섭
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석 (Mission Design and Analysis based on SEM Angle by Using Variable Coast During 3.5 Earth-Moon Phasing Loop Transfer)

  • 최수진;이동헌;임성빈;최석원
    • 한국항공우주학회지
    • /
    • 제46권1호
    • /
    • pp.68-77
    • /
    • 2018
  • 달 궤도선의 전반적인 특성을 해석하기 위해 일별 발사가 가능한 Variable Coast 방식을 3.5 위상전이궤적에 적용하였다. 발사장 및 발사체를 선정하여 발사에서부터 달 궤도 진입까지의 전 과정에 대한 임무 시나리오를 구성 및 해석을 수행하였다. 특히 지구-달 회전좌표계에서 정의한 SEM(Satellite-Earth-Moon) 각도는 3.5 위상전이궤적을 전반적으로 검토할 수 있는 중요한 구속조건이다. SEM 각도를 이용한 시뮬레이션 결과를 지구-달 전이궤적 및 달 궤도 진입에서의 발사 시각, 관성비행 기간, 근지점 고도 및 ${\Delta}V$등 다양한 관점으로 분석하고 최적의 SEM 각도를 제안하였다. 이 결과는 향후 Fixed Coast 분석결과와 비교함으로써 발사체 선정에 따른 3.5 위상전이궤적의 특성을 평가하는데 큰 도움을 줄 것으로 예상된다.

불법드론 탐지를 위한 PSO 기반 군집드론 최적화 정찰궤적계획 (Optimal Surveillance Trajectory Planning for Illegal UAV Detection for Group UAV using Particle Swarm Optimization)

  • 임원호;정형찬;호등;아람기르;장경희
    • 한국항행학회논문지
    • /
    • 제24권5호
    • /
    • pp.382-392
    • /
    • 2020
  • 드론기술은 민수용과 군사용 양 분야 에서 전도유망한 기술이나, 규정과 관련법의 미성숙으로 불법드론이 오남용 되고, 사회안전에 심각한 위협이 되고 있다. 본고에서는 PSO (particle swarm optimization)에 기반을 둔 군집드론 궤적계획기를 개발하여, 군집정찰드론들에게 최적화된 3차원 궤적탐지기술을 제공한다. 나아가서, 에너지소비도, 비행위험도 및 SAP (surveillance area priority)와 부합하는 군집 목적물 최적화 함수를 제시하고 평가한다. 군집 비행 시뮬레이션 결과는, 제안한 궤적계획기로 생성한 궤적은 에너지 소비도 및 비행위험도를 최소화 하며 탐색한다는 것을 입증해준다.

궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계 (Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

The Study of the Position Estimation for an Autonomous Land Vehicle

  • Lim, Ho;Park, Chong-Kug
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.239-246
    • /
    • 2004
  • In this paper, we develop and implement a high integrity GNC(Guidance, Navigation, and Control) system, based on the combined use of the Global Positioning System (GPS) and an Inertial Measurement Unit (IMU), for autonomous land vehicle applications. This paper highlights guidance for the predetermined trajectory and navigation with detection of possible faults during the fusion process in order to enhance the integrity of the navigation loop. The implementation of the GNC system to the autonomous land vehicle presented with fault detection methodology considers high frequency faults from the GPS receiver caused by shadowing and multipath error The implementation, based on a low-cost, strapdown INS aided by standard GPS technology, is described. The results of the field test in the urban environment are presented and showed effectiveness of the GNC system.

자이로스코프를 이용한 영상/DR 통합 항법 시스템의 자세보정 (Attitude Compensation of Vision/DR Integrated Navigation System Using Gyroscope)

  • 박슬기;구문석;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제16권8호
    • /
    • pp.810-815
    • /
    • 2010
  • This paper proposes a vision/DR integrated navigation system using distance between wheels of the vehicle and a gyroscope. In order to show the validity of the proposed vision/DR integrated navigation system, experiments were performed for a trajectory of a mobile robot. Experimental results show that the proposed vision/DR integrated navigation system gives better navigation performance than a vision/DR integrated navigation system using only distance between wheels of the vehicle.