• Title/Summary/Keyword: vehicle safety message service

Search Result 9, Processing Time 0.03 seconds

An Inter-Vehicle Emergency Message Propagation Method with Vehicle Equivalent Group (차량동위그룹을 이용한 차량 간 긴급 메시지 전파 방법)

  • Yu, Suk-Dea;Cho, Gi-Hwan
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.340-347
    • /
    • 2007
  • Vehicle safety service can be effectively achieved with inter-vehicle communication technologies, in which moving vehicles transmit a safety related urgency information such as traffic accidents, sudden stops, obstacle appearance etc. They usually utilize a broadcast of message propagation method because the communicating vehicles are not known each other. The pure broadcasting scheme does not satisfy the requirements of vehicle safety communication service due to the transmission delay with frequent message collisions. To resolve this problem, this paper presents a group based propagation method for the multi-hop transmission, in order to deliver an urgency message to the reasonable size of vehicle troop. A group header is elected in considering of the position information of vehicles and radio transmission range. And a vehicle equivalent group is formed with the header. With benefits of the group based transmission, it is possible to minimize the unnecessary transmission and the possibility of message collisions. Simulation results show that the message propagation performance is so stable regardless of vehicle's congestion degree.

A New Congestion Control Algorithm for Vehicle to Vehicle Safety Communications (차량 안전 통신을 위한 새로운 혼잡 제어 알고리즘 제안)

  • Yi, Wonjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.125-132
    • /
    • 2017
  • Vehicular safety service reduces traffic accidents and traffic congestion by informing drivers in advance of threats that may occur while driving using vehicle-to-vehicle (V2V) communications in a wireless environment. For vehicle safety services, every vehicle must broadcasts a Basic Safety Message(BSM) periodically. In congested traffic areas, however, network congestion can easily happen, reduce the message delivery ratio, increase end-to-end delay and destabilize vehicular safety service system. In this paper, to solve the network congestion problem in vehicle safety communications, we approximate the relationship between channel busy ratio and the number of vehicles and use it to estimate the total network congestion. We propose a new context-aware transmit power control algorithm which controls the transmission power based on total network congestion. The performance of the proposed algorithm is evaluated using Qualnet, a network simulator. As a result, the estimation of total network congestion is accurately approximated except in specific scenarios, and the packet error rate in vehicle safety communication is reduced through transmit power control.

A congestion control scheme estimating global channel busy ratio in VANETs

  • Kim, Tae-won;Jung, Jae-il;Lee, Joo-young
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • In vehicular safety service, every vehicle broadcasts Basic Safety Message (BSM) periodically to inform neighbor vehicles of host vehicle information. However, this can cause network congestion in a region that is crowded with vehicles resulting in a reduction in the message delivery ratio and an increase in the end-to-end delay. Therefore, it could destabilize the vehicular safety service system. In this paper, in order to improve the congestion control and to consider the hidden node problem, we propose a congestion control scheme using entire network congestion level estimation combined with transmission power control, data rate control and time slot based transmission control algorithm. The performance of this scheme is evaluated using a Qualnet network simulator. The simulation result shows that our scheme mitigates network congestion in heavy traffic cases and enhances network capacity in light traffic cases, so that packet error rate is perfectly within 10% and entire network load level is maintained within 60~70%. Thus, it can be concluded that the proposed congestion control scheme has quite good performance.

Timing Data Optimize of Traffic Intersection C-ITS Message Set for LTE-based V2X in-vehicle Devices (LTE 기반 차량용 V2X 통신단말에 대한 신호 교차로 C-ITS 메시지의 타이밍 데이터 최적화 기법)

  • Park, Su-In;Seo, Woo-Chang;Yang, Eun-Ju;Seo, Dae-Wha
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 2022
  • Recently, the introduction of Cooperative Intelligent Transport Systems (C-ITS) has been attempted to solve the limitation of only the sensor of the vehicle itself. For example, vehicles traveling at intersections can drive more safely through C-ITS. By using V2X communication of WAVE and LTE, the driver can receive the status and time of traffic lights. However, LTE has a larger transmission delay time than WAVE, so timimg data may not match in real time. In this paper, using the SPaT message, it was confirmed that LTE has a larger C-ITS service transmission delay time than WAVE. Finally, it was confirmed that the timing data of SPaT provided by LTE corrected by the algorithm is similar to SPaT provided by WAVE. It was confirmed that safer intersection driving is possible based on real-time.

WAVE based Multi-Channel MAC(MCM) Technology for Reliable Vehicle Safety Message Service (신뢰성 높은 차량 안전 서비스를 위한 WAVE 기반 Multi-Channel MAC 기술)

  • Park, Jong-Min;Oh, Hyun-Seo;Cho, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.78-85
    • /
    • 2011
  • In vehicle ad-hoc network (VANET) environments, traffic related information such as accident information, emergency information and real time traffic condition have to be delivered to on-board-unit (OBU) or/and road-side-equipment (RSE) for preventing traffic accidents in advance. In this paper, we introduce a Multi-Channel MAC (MCM) since the existing single channel operation may cause packet transmission delay and unexpected communication failure. To offer a seamless safety message transmission during the various services, it is necessary to manage the MAC scheduler in wireless access in vehicular environments (WAVE) systems. The MCM consists of MAC softwares and MAC hardwares where the former and the later ones are implemented with real time operation system based C language and FPGA module with VHDL language, respectively. The performance and QoS are verified by practical measurements and compared with the scheme using single channel operation.

Dynamic Channel Allocation Using SJF Scheduling in IEEE 802.11p/1609 Vehicular Network (IEEE 802.11p/1609 차량 네트워크에서 SJF(Shortest Job First) 스케쥴링을 이용한 동적 채널 할당 기법)

  • Jang, Hyun-Jun;Kwon, Yong-Ho;Rhee, Byung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.624-627
    • /
    • 2014
  • In vehicular network, the basic goal is to provide vehicle safety service and commercial service such as ITS(Intelligent Transportation System) or video, etc on the road. And most research concentrated on transportation of safety message in congestion situation. It is important to allocate channel for safety message in congestion situation, but providing suitable service is also important problem in vehicular network. For this reason, IEEE 1609.4 allocate 4 multiple service channels (SCHs) for non-safety data transfer. But, in congestion situation with many vehicles, the contention for channel acquisition between services becomes more severe. So services are provided improperly because of lack of service channel. This paper suggests dynamic channel allocation algorithm. The proposed algorithm is that RSU(RaodSide Unit) maintain and manage the information about service and status of channels. On based of the SJF(Shortest Job First) scheduling using those information, RSU selects the most appropriate channel among the 4 SCHs allocated by IEEE 1609.4 in network congestion situation.

  • PDF

The Effect of VMS Message Presentation Type on the Speed Reduction of Driving Vehicle in School Zone (스쿨존에서 VMS의 메시지 제시유형이 주행차량속도 감소에 미치는 영향)

  • Lim, Sung Jun;Lee, Ji Dong;Park, Han Kyu;Lee, Kee Hoon;Moon, Kwang Su;Oah, She Zeen
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.89-99
    • /
    • 2018
  • The number of traffic accidents in Korea has been increasing since 2014. In most school zones, safety signs are installed to prevent children's traffic accidents. However, it has been known that the effects of those signs are not significant. A variable message sign(VMS), one of the components of Intelligent Transport System(ITS), has emerged as an alternative method. Therefore, this study examines relative effects of two different VMS messages(Timely vs. Continuous) on vehicle speed. Experiments were conducted in two school zones. 6,676 vehicles were measured for speed limit compliance. A counterbalanced multiple baseline design was adopted. The results showed that both types of message are effective in reducing the speed of vehicle. Specifically, A timely message was more effective in slowing down vehicle speed and improving speed limit compliance than a continuous message. The present study suggested that a VMS with human factors can be effective.

Proposed Message Transit Buffer Management Model for Nodes in Vehicular Delay-Tolerant Network

  • Gballou Yao, Theophile;Kimou Kouadio, Prosper;Tiecoura, Yves;Toure Kidjegbo, Augustin
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.153-163
    • /
    • 2023
  • This study is situated in the context of intelligent transport systems, where in-vehicle devices assist drivers to avoid accidents and therefore improve road safety. The vehicles present in a given area form an ad' hoc network of vehicles called vehicular ad' hoc network. In this type of network, the nodes are mobile vehicles and the messages exchanged are messages to warn about obstacles that may hinder the correct driving. Node mobilities make it impossible for inter-node communication to be end-to-end. Recognizing this characteristic has led to delay-tolerant vehicular networks. Embedded devices have small buffers (memory) to hold messages that a node needs to transmit when no other node is within its visibility range for transmission. The performance of a vehicular delay-tolerant network is closely tied to the successful management of the nodes' transit buffer. In this paper, we propose a message transit buffer management model for nodes in vehicular delay tolerant networks. This model consists in setting up, on the one hand, a policy of dropping messages from the buffer when the buffer is full and must receive a new message. This drop policy is based on the concept of intermediate node to destination, queues and priority class of service. It is also based on the properties of the message (size, weight, number of hops, number of replications, remaining time-to-live, etc.). On the other hand, the model defines the policy for selecting the message to be transmitted. The proposed model was evaluated with the ONE opportunistic network simulator based on a 4000m x 4000m area of downtown Bouaké in Côte d'Ivoire. The map data were imported using the Open Street Map tool. The results obtained show that our model improves the delivery ratio of security alert messages, reduces their delivery delay and network overload compared to the existing model. This improvement in communication within a network of vehicles can contribute to the improvement of road safety.

Development of Vehicle LDW Application Service using AUTOSAR Platform on Multi-Core MCU (멀티코어 상의 AUTOSAR 플랫폼을 활용한 차량용 LDW 응용 서비스 개발)

  • Park, Mi-Ryong;Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.113-120
    • /
    • 2014
  • In this paper, we examine Asymmetric Multi-Processing Environment to provide LDW service. Asymmetric Multi-Processing Environment consists of high-speed MCU to support rapid image processing and low-speed MCU for controlling with other ECU at the control domain. Also we designed rapid image process application and LDW application Software Component(SW-C) according to the development process rule of AUTOSAR. To communicate between two MCUs, timer based polling based IPC was designed. Also to communicate with other ECUs(Electronic Control Units), we designed CAN messages to provide alarm information and receiving CAN message to catch the Turn signal. We confirm the possibility of the various ADAS development using an Asymmetric Multi-Processing Environment and AUTOSAR platform. We also expect providing ISO 26262 functional safety.