• 제목/요약/키워드: vehicle positioning technology

검색결과 143건 처리시간 0.025초

SYSTEM ARCHITECTURE OF THE TELEMATICS POSITIONING TESTBED

  • Kim, Young-Min;Kim, Bong-Soo;Choi, Wan-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.349-352
    • /
    • 2005
  • The telematics positioning testbed is an infrastructure to test and verify positioning technology, the sub-component of telernatics system. The positioning testbed provides the environment of performance analysis for acquisition of static and dynamic positioning information using telematics vehicle. This testbed consists of onboard positioning system, positioning reference station and lab positioning server. The onboard positioning system equipped in telematics vehicle, consists of target positioning system, reference positioning system, and analysis tool. A equipment acquiring high precision positioning data obtained from GPS combined with IMU was set as a reference positioning system. Analysis tool compares observed positioning data with high precision positioning information from a reference positioning system, and processes positioning information. Positioning reference station is RTK system used for reducing atmosphere error, and it transmits corrected information to reference positioning system. Positioning server which is located at laboratory manages positioning database and provides monitoring data to integrated testbed operating system. It is expected that the testbed supports commercialization of telernatics technology and services, integrated testing among component technology and verification.

  • PDF

비전 기반 고정밀 차량 측위 기술 (Vision-Based High Accuracy Vehicle Positioning Technology)

  • 조상일;이재성
    • 한국통신학회논문지
    • /
    • 제41권12호
    • /
    • pp.1950-1958
    • /
    • 2016
  • 최근 활발히 연구되고 있는 차세대 지능형교통시스템(C-ITS), 자율주행 자동차 등 교통관련 IT기술 분야에 있어 차량의 위치를 정밀하게 측정하는 기술은 매우 중요하다. 도로위의 차량 측위를 위한 기술은 GPS 가 대표적이나 도심지로 가면 주위에 고층건물이 많아 GPS 신호가 반사되어 심한 경우는 2~300 m의 오차가 발생할 정도로 정확도가 매우 떨어진다. 따라서 본 논문에서는 비전기반의 고정밀 차량측위 기술을 제안한다. 개략적인 처리과정은 고정된 카메라로부터 입력받은 영상 속에 관심 영역을 설정한 후 영역 내 차량 객체 검출(Vehicle Detection)을 수행하여 객체가 점유하는 도로영역을 계산, 미리 정의된 Homography변환행렬을 이용하여 지도영상으로 사용할 항공시점(Aerial View) 상의 점들로 변환하여 측위를 수행한다. 측위성능분석결과 평균적으로 약 20cm이내의 높은 정확도를 가지고 있으며 최대 오차역시 44.72cm를 넘지 않았다. 또한 $22-25_{FPS}$ 의 빠른 처리로 실시간 측위가 가능함을 확인하였다.

Development of Image-based Assistant Algorithm for Vehicle Positioning by Detecting Road Facilities

  • Jung, Jinwoo;Kwon, Jay Hyoun;Lee, Yong
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.339-348
    • /
    • 2017
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.

Advanced Navigation Technology Development Trend as an Unmanned Vehicle Core Technology

  • Seok, Hyo-Jeong;Hwang, In Seong;Kang, Wanggu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권4호
    • /
    • pp.235-242
    • /
    • 2021
  • Unmanned Aerial Vehicles (UAVs), which were used for military purposes, are gradually expanding their application fields under the influence of electrification and digitalization. Starting from the field of aerial imaging and Intelligence Surveillance and Reconnaissance (ISR) mission, nowadays the possibility of Urban Air Mobility (UAM), which transports passengers and cargo with drones, is widely under discussion. In order to occupy the rapidly growing global unmanned aerial vehicle market in advance, it is necessary to secure core technologies and develop key UAVs components based on the new technologies. In the navigation field, it is necessary to secure a precise position with guaranteed reliability and continuity, unrelated to the operating environments. The reliability and continuity should be secured in the algorithm level and in the H/W component levels also. In order to achieve this technical goal, the Ministry of Science and ICT has launched the 'Unmanned Vehicle Core Technology Research and Development Program' in 2019 to support the R&D on the unmanned vehicle technologies. In this paper, authors introduce the unmanned vehicle core technology research and development program to the related researchers. The authors summarize the backgrounds of the program and show the technological tasks and objectives on the sub-programs in the unmanned vehicle navigation program. We present the program schedules especially focused on the test and evaluation of the developed technologies and components.

Performance Analysis of GPS/BDS Integrated Precise Positioning System Considering Visibility in Urban Environments

  • Noh, Jae Hee;Lee, Sun Yong;Lim, Deok Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제8권1호
    • /
    • pp.31-40
    • /
    • 2019
  • In recent years, Intelligent Transport Systems (ITS) and Autonomous Vehicle Technology have actively studied around the world. In order to achieve the purpose of Advanced Driver Assistance System (ADAS) and Autonomous Vehicle Technology, it must be obtained accurate and reliable positioning. However, the problem of positioning in the urban area is a low position accuracy caused by the reduction of the number of visible satellites due to high buildings. In this paper, we analyzed the availability of precise positioning system in urban area are using GPS/BDS integrated system. For this study, GPS and BDS satellite signals were collected using two low-cost receivers in the open sky and a designed software based platform for precise positioning performance analysis. And we analyzed the precise positioning performance by changing the mask angle considering the urban area. From the results, it can be confirmed that the performance of precise positioning of GPS only and BDS only decrease in the environment where mask angle is $40^{\circ}$ to $45^{\circ}$, however, GPS/BDS integrated system maintains high performance of precise positioning.

멀티센서 데이터 융합에 의한 차륜형 이동체 위치추정시스템의 정도 개선에 관한 연구 (A Study on the Improvement of the Accuracy of a Wheeled Vehicle Positioning System by Multisensor Data Fusion)

  • 최진규;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.119-126
    • /
    • 2000
  • In constructing the positioning system based on a conventional dead-reckoning for a wheeled vehicle with pneumatic tires, the position estimation error is inevitable as changes of the radius of the wheels depend on live load and variable enviroment. Therefore, this paper proposes the positioning system which can estimate the error source i.e. the vehicle parameter errors, such as the right and left wheel radius error, using gyroscope and ultrasonic sensor and correct the parameter to reduce the dead-reckoned position estimation error. The extended Kalman filter was used as a method for the multisensor data fusion. The simulation to verify the effectiveness of the proposed positioning system is performed.

  • PDF

이동차량에 탑재된 GPS의 동적 위치측정에 관한 연구 (A Study on Kinematic Positioning by GPS Platformed on Moving Vehicle)

  • 최병길
    • 한국측량학회지
    • /
    • 제17권4호
    • /
    • pp.373-381
    • /
    • 1999
  • 이동매핑시스템은 GPS 및 수치영상측정기술의 발달에 의하여 실시간으로 공간데이터를 신속하게 획득할 수 있는 시스템이다. GPS에 의한 동적 측위는 이러한 이동매핑시스템을 가능하게 한 핵심기술이라 할 수 있다. 본 연구에서는 이동 차량에 탑재된 GPS에 의한 동적 위치측정의 정확도 및 그 효율성을 분석하는데 그 목적이 있다. 이를 위하여 노선을 선정한 다음 이동차량에 GPS를 탑재하고 동적 GPS 측량을 실시하였다. 연구결과 차량에 탑재된 GPS에 의한 동적측위는 상당한 정밀도를 가지고 효율적으로 공간 위치를 실시간으로 측정할 수 있음을 알 수 있었다. 그러나 도심지 등에서의 신호단절 보완 및 정확한 위치측정을 위해서는 관성항법시스템이 결합되어야 할 것이다.

  • PDF

A Performance Comparison between Operation Strategies for Idle Vehicles in Automated Guided Vehicle System

  • Kim, Kap-Hwan;Kim, Jae-Yeon
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.67-81
    • /
    • 1998
  • An Automated Guided Vehicle System (AGVS) with a unidirectional loop guide path is modeled as a discrete-time stationary Markov chain. It is discussed how to estimate the mean response time, the utilization, and the cycle time of AGV for a delivery order. Three common operation strategies for idle vehicles - central zone positioning rule, circulatory loop positioning rule and point of release positioning rule - are analyzed. These different operation strategies are compared with each other based on the performance measures.

  • PDF

초단기선 탑재 무인수상선의 협력 항법을 통한 무인잠수정의 위치인식 향상 (Improved Localization of Unmanned Underwater Vehicle via Cooperative Navigation of Unmanned Surface Vehicle Equipped with Ultrashort Baseline)

  • 최승혁;최영철;정종대
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.391-398
    • /
    • 2024
  • Accurate positioning is essential for unmanned underwater vehicle (UUV) operations, particularly for long-term survey missions. To reduce the inherent positioning errors from the inertial navigation systems of UUVs, or dead reckoning, underwater terrain observations from sonar sensors are typically exploited. Within the framework of pose-graph optimization, we can generate submaps of the seafloor and use them to add loop-closure constraints to the pose graph by determining the best match between the submaps. However, this approach results in error accumulation in long-term operations because the quality of local submaps depends on the dead reckoning. Hence, we can adopt external acoustic positioning systems, such as an ultrashort baseline (USBL), to add global constraints to the existing pose graph. We assume that the acoustic transponder is installed on a UUV and that the acoustic transceiver is equipped in an unmanned surface vehicle trailing the UUV to maintain an acoustic connection between the vehicles. We simulate the terrain and USBL measurements as well as evaluate the performance of the UUV's pose estimation via online pose-graph optimization.

Radio Frequency Based Emergency Exit Node Technology

  • Choi, Youngwoo;Kim, Dong Kyoo;Kang, Do Wook;Choi, Wan Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.91-100
    • /
    • 2013
  • This paper introduces an indoor sensor fusion wireless communication device which provides the Location Based Service (LBS) using fire prevention facility. The proposed system can provide information in real time by optimizing the hardware of Wi-Fi technology. The proposed system can be applied to a fire prevention facility (i.e., emergency exit) and provide information such as escape way, emergency exit location, and accident alarm to smart phone users, dedicated terminal holders, or other related organizations including guardians, which makes them respond instantly with lifesaving, emergency mobilization, etc. Also, the proposed system can be used as a composite fire detection sensor node with additional fire and motion detect sensors.