• Title/Summary/Keyword: vehicle operating cost

Search Result 109, Processing Time 0.029 seconds

Designing the Optimal Urban Distribution Network using GIS : Case of Milk Industry in Ulaanbaatar Mongolia (GIS를 이용한 최적 도심 유통 네트워크 설계 : 몽골 울란바타르 내 우유 산업 사례)

  • Enkhtuya, Daariimaa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.159-173
    • /
    • 2019
  • Last-Mile delivery optimization plays a key role in the urban supply chain operation, which is the most expensive and time-consuming and most complicated part of the whole delivery process. The urban consolidation center (UCC) is regarded as a significant asset for supporting customer demand in the last-mile delivery service. It is the key benefit of UCC to improve the load balance of vehicles and to reduce the total traveling distance by finding the better route with the well-organized multi-leg vehicle journey in the urban area. This paper presents the model using multiple scenario analysis integrated with mathematical optimization techniques using Geographic Information System (GIS). The model aims to find the best solution for the distribution network consisted of DC and UCC, which is applied to the case of Ulaanbaatar Mongolia. The proposed methodology integrates two sub-models, location-allocation model and vehicle routing problem. The multiple scenarios devised by selecting locations of UCC are compared considering the general performance and delivery patterns together. It has been adopted to make better decisions the quantitative metrics such as the economic value of capital cost, operating cost, and balance of using available resources. The result of this research may help the manager or public authorities who should design the distribution network for the last mile delivery service optimization using UCC within the urban area.

  • PDF

Technical Value Model and Evaluation for Smart In-vehicle Network (스마트 차량내(內) 네트워크 기술가치 모델 및 평가)

  • Kim, Byung-Woon
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.2
    • /
    • pp.368-386
    • /
    • 2017
  • The purpose of this study is to present the technology value model based on profit approach and IITP practical guide for Ethernet network technology, which is the core technology of autonomous vehicles and connected cars in the hyper-connected industry. In-vehicle network, Ethernet technology, Ethernet port count, port pricing, and application data for technology assessment are sources of global market research organizations. The data on the company's COGS (Cost of Goods Sold), operating capital requirement, capital expenditure, and income statement data are used by the Bank of Korea's Business Analysis Report. According to the results of the study, the product market size was estimated to be US $470.3 billion and the technology market size was $52.1 billion over the seven years of economic life cycle of technology. The market value of the technology was estimated to be $260 million reflecting the possibility of entry into the market. In the case of the corporate management analysis report, the average value of the IITP and the top 25% were $0.7 million and $40.2 million, respectively. -27.8 million, and -73.6 million dollars respectively. This implies that government support for policy support is needed when conducting corporate R&D with high cost-to-sales ratio. The results of this study can be used as a reference for the evaluation of technology demand based ICT R&D technology in the industrial internet market in the fourth industrial revolution era.

Forecasting Air Freight Demand in Air forces by Time Series Analysis and Optimizing Air Routing Problem with One Depot (군 항공화물수요 시계열 추정과 수송기 최적화 노선배정)

  • Jung, Byung-Ho;Kim, Ik-Ki
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.89-97
    • /
    • 2004
  • The Korea Air Force(KAF) has operated freight flights based on the prefixed time and route schedule, which is adjusted once in a month. The major purpose of the operation of freight flights in the KAF is to distribute necessary supplies from the home air base to other air bases. The secondary purpose is to train the young pilots to get more experiences in navigation. Each freight flight starts from and returned to the home air base everyday except holidays, while it visits several other air bases to accomplish its missions. The study aims to forecast freight demand at each base by using time series analysis, and then it tried to optimize the cost of operating flights by solving vehicle routing problem. For more specifically, first, several constraints in operating cargos were defined by reviewing the Korea Air Force manuals and regulation. With such constraints, an integer programming problem was formulated for this specific routing problem allowing several visits in a tour with limitation of maximum number of visits. Then, an algorithm to solve the routing problem was developed. Second, the time series analysis method was applied to find out the freight demand at each air base from the mother air base in the next month. With the forecasted demands and the developed solution algorithm, the oprimum routes are calculated for each flight. Finally, the study compared the solved routing system by the developed algorithm with the existing routing system of the Korea Air Force. Through this comparison, the study proved that the proposed method can provide more (economically) efficient routing system than the existing system in terms of computing and monetary cost. In summary, the study suggested objective criteria for air routing plan in the KAF. It also developed the methods which could forecast properly the freight demands at each bases by using time series analysis and which could find the optimum routing which minimizes number of cargo needed. Finally, the study showed the economical savings with the optimized routing system by using real case example.

Development of an Apparatus for Vertical Transfer of a PRT Vehicle Operating on a Road Network (운행 중인 PRT 차량의 수직이송을 위한 장치 개발)

  • Kang, Seok-Won;Um, Ju-Hwan;Jeong, Rag-Gyo;Kim, Jong-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2604-2611
    • /
    • 2013
  • The Personal Rapid Transit(PRT) system has been highly interested in future transportation developments due to its on-demand and optimized door-to-door transport capability. However, the major impediments to the commercialization of PRT are the high cost for construction of infrastructures as opposed to the small transport capacity and difficulty in defining the role of PRT in building a balanced transportation system. In this study, the vertical transfer device for the PRT vehicle is developed to provide more flexible and better compatible urban mobility services between means of transportation, which is expected to meet particular demands in a particular environment. This apparatus was initially designed based on the basis of vertical circulating conveyors with steel chains, which is frequently used in logistics. Its advantages are capable of the non-stop loading and reduced head-way time. Most importantly, it was intensified by the additional idea to ensure the stable and reliable transfer of the PRT vehicle fully loaded with passengers. The 1/10-scale prototype was successfully tested to demonstrate a fundamental mechanism of vertical transfer and identify unexpected user requirements prior to a real manufacturing process.

A Study on the Fiscal Efficiency of the Early Scrappage Support System for Aged Diesel Vehicles (노후 경유차 조기폐차 지원제도의 재정 효율성에 관한 연구)

  • Sung Hoon Kang
    • Environmental and Resource Economics Review
    • /
    • v.32 no.2
    • /
    • pp.107-126
    • /
    • 2023
  • This study analyzes the financial efficiency of the early scappage support system using the benefit and cost analysis. To do so, we use comprehensive administrative data on the early scrappage of old diesel vehicles. The result shows that the benefit-cost ratio was greater than 1 before 2020, but it appeared to be less than 1 after 2020. This indicates that despite recent reforms to increase the subsidy of early scrappage of old diesel vehicles, the rate of the benefit of air quality improvement is not as fast as the increase in system operation cost of this system. The benefit of air quality improvement depends on how much the operating period is shortened due to early scrappage support system. The earlier this period is brought forward, the more likely it is that the benefits of early scrappage will exceed the costs. Upon examining the results of this study, it was found that when the scrappage timing is brought forward by 5 years, the B/C for 98% of the samples becomes 1, greatly securing financial efficiency. Therefore, it is important for the government to reform the system so that it can influence the decision of old diesel vehicle owners on the timing of scrappage.

Numerical Study on Performance Improvement by Changing of Fuel Injection Timing of Common Rail Diesel Engine for using Electric Generation for Waste Engine Remanufacturing (폐엔진 재제조를 위한 발전용 커먼레일 디젤엔진의 연료분사 타이밍 변경을 통한 성능향상에 대한 수치해석 연구)

  • Kim, Seung Chul;Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • The common rail diesel engine used in this study is a remanufactured waste engine. The fuel injection timing of the waste engine is set to be suitable for the operating conditions of the vehicle. However, the engine of a generator is operated at a constant speed and mainly at partial load. Therefore, it is necessary to change the fuel injection timing suitable for the power generation engine, and the cost and the time required for such change must be minimized as much as possible. As a result of the analysis, it was confirmed that the fuel efficiency improves according to the fuel injection timing suitable for the engine for the generator, thereby increasing the performance and fuel efficiency.

The Estimation and Application of Optimum Design Variables for Road Tunnel Ventilation System Based on Statistical Analysis (통계적 분석을 이용한 터널 환기시스템 적정설계변수의 산정 및 적용에 관한 연구)

  • 이보영;유용호;김진
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • In this study, the emission rate of pollutant was modified according to the published standards, and the distribution of pollutant concentration was analyzed for each vehicle velocity. This modified emission rate was applied to a model tunnel and it was proved that the required air quantity was reduced to 49%, compared to the PIARC method. From the simulation result, it was proved by using statistics that the most sensitive factor among them is the friction coefficient and it was modified to the value in the range of 0.018 to 0.021. It is also expected that the required air quantity can be decreased form 14.4% to 19.2% according as the coefficient is applied to the domestic model tunnels. In conclusion, it is proposed that the number of jet fans can be reduced and the annual operating cost can be curtailed as well.

Suggestion on the SBAS Augmentation Message Providing System for the the Low-cost GPS Receiver of Drone Operation (드론의 저가형 GPS 수신기용 SBAS 보강 정보 전송 시스템 제안)

  • Seok, Hyo-jeong;Yoon, Dong-hwan;Lim, Cheol-soon;Park, Byung-woon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.272-278
    • /
    • 2017
  • In order to meet performance requirements specified by the ICAO in drone operation, a system that provides augmentation information such as SBAS is needed. However, the operating range of the drone is limited in situation where the drone can not received the SBAS message continuously. In this paper, we propose a system to transmit SBAS augmentation message using a separate communication channel assuming the SBAS satellite signal to the drone has been shielded. We implemented the proposed system and verified its performance in the static environment. The DGPS positioning results showed that the accuracy difference is about 10cm, which means the accuracy performance was very similar. In addition, the protection level calculated by the system also shows the difference within 2m from the value calculated by the airborne receiver.

Study on the Application of the Electric Drive System of Fuel Pump for Diesel Engine of Commercial Vehicle using HILS (HILS기반 상용차 디젤엔진용 연료펌프의 전기구동 시스템 적용에 관한 연구)

  • Ko, Youngjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • Fuel injection pressure has steadily increased in diesel engines for the purpose of improving fuel efficiency and cleaning exhaust gas, but it has now reached a point, where the cost for higher pressure does not warrant additional gains. Common rail systems on modern diesel engines have fuel pumps that are mechanically driven by crankshaft. The pumps actually house two pumping module inside: a low pressure pump component and a high pressure pump component. Part of the fuel compressed by the low pressure component returns to the tank in the process of maintaining the pressure in the common rail. Since the returning fuel represents pumping loss, fuel economy improves if the returned fuel can be eliminated by using a properly controled electrical fuel pump. As the first step in developing an electrical fuel pump the fuel supply system on a 6 liter diesel engine was modeled with AMESim to analyze the workload and the fuel feed rate of the injection pump, and the results served as basis for selecting a suitable servo motor and a reducer to drive the pump. A motor controller was built using a DSP and a program which controls the common rail pressure using a proportional control method based on the target fuel pressure information from the engine ECU. A test rig to evaluate performance of the fuel pump is implemented and used to show that the newly developed electrically driven fuel pump can satisfy the fuel flow demand of the engine under various operating conditions when the rotational speed of the pump is adequately controlled.

An Inventory Rationing Method in a M-Store Regional Supply Chain Operating under the Order-up-to Level System

  • Monthatipkul, Chumpol
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.80-92
    • /
    • 2009
  • This paper addresses the inventory rationing issue embedded in the regional supply chain inventory replenishment problem (RSIRP). The concerned supply chain, which was fed by the national supply chain, consisted of a single warehouse distributing a single product to multiple stores (M-stores) with independent and normally distributed customer demand. It was assumed that the supply chain operated under the order-up-to level inventory replenishment system and had only one truck at the regional warehouse. The truck could make one replenishment trip to one store per period (a round trip per period). Based on current inventories and the vehicle constraint, the warehouse must make two decisions in each period: which store in the region to replenish and what was the replenishment quantity? The objective was to position inventories so as to minimize lost sales in the region. The warehouse inventory was replenished in every fixed-interval from a source outside the region, but the store inventory could be replenished daily. The truck destination (store) in each period was selected based on its maximum expected shortage. The replenishment quantity was then determined based on the predetermined order-up-to level system. In case of insufficient warehouse inventories to fulfill all projected store demands, an inventory rationing rule must be applied. In this paper, a new inventory rationing rule named Expected Cost Minimization (ECM) was proposed based on the practical purpose. The numerical results based on real data from a selective industry show that its performance was better and more robust than the current practice and other sharing rules in the existing literature.