• Title/Summary/Keyword: vehicle motion control

Search Result 449, Processing Time 0.033 seconds

Simulation of Vehicle Steering Control through Differential Braking (차동 제동을 이용한 조향 제어 시뮬레이션)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

Active Handling Control of the Differential Brake System Using Fuzzy Controller (퍼지제어기를 이용한 차동브레이크 시스템의 능동 조향제어)

  • 윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.82-91
    • /
    • 2003
  • Vehicle dynamics control (VDC) has been a breakthrough and become a new terminology for the safety of a driver and improvement of vehicle handling. This paper examines the usefulness of a brake steer system (BSS), which uses differential brake forces for steering intervention in the context of VDC, In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. An 8-DOF non-linear vehicle model including STI tire model will be validated using the equations of motion of the vehicle, and the non-linear vehicle dynamics. Since fuzzy logic can consider the nonlinear effect of vehicle modeling, fuzzy controller is designed to explore BSS feasibility, by modifying the brake distribution through the control of the yaw rate of the vehicle. The control strategies developed will be tested by simulation of a variety of situation; the possibility of VDC using BSS is verified in this paper.

Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle Using a Single Camera (단일 카메라를 이용한 비쥬얼 서보 자율무인잠수정의 수중 도킹)

  • 이판묵;전봉환;홍영화;오준호;김시문;이계홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.316-320
    • /
    • 2003
  • This paper introduces an autonomous underwater vehicle (AUV) model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the AUV docking test.

  • PDF

Observer based Adaptive Control of Longitudinal Motion of Vehicles (관측자를 이용한 직진 주행 차량의 적응 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Lee, Hyoung-Chan;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2608-2610
    • /
    • 2000
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Disturbance rejection and performance improvement in a moving vehicle

  • Shin, Kyoo-Jae;Kim, Go-Do;Kwon, Young-Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.223-226
    • /
    • 1996
  • The moving vehicle with disturbances has the 6 dof motion in the pitching, yawing and rolling directions of two independent axes. The control system in such a moving vehicle has to perform disturbance rejection well. The paper presents PID controller with disturbance rejection function, low sensitivity filter and notch the bending frequency rejection. The performance of a designed system has been certified by the simulation and experiment results.

  • PDF

Unified Control of Independent Braking and Steering Using Optimal Control Allocation Methods for Collision Avoidance (전(全)방향 충돌 회피를 위한 액츄에이터 최적 분배 알고리즘)

  • Kim, Kyuwon;Kim, Beomjun;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.11-16
    • /
    • 2013
  • This paper presents a unified control algorithm of independent braking and steering for collision avoidance. The desired motion of the vehicle in the yaw plane is determined using the probabilistic risk assessment method based on target state estimation. For the purpose of coordinating the independent braking and steering, a non-linear vehicle model has been developed, which describes the vehicle dynamics in the yaw plane in both linear and extended non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints. The performance of the proposed control algorithm has been investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

수중운동의 표적추적성능 해석과 제어기 설계

  • 윤강섭;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.330-335
    • /
    • 1995
  • The actuator's response delay, disturbance and measurement noise can often cause a significant error in the target tracking of an underwater vehicle. The first purpose of this paper is error analysis about motion of an underwater vehicle when the closed loop system has actuator and disturbance and noise. The underwater vehicle is simulated for cases of various disturbances. The second purpose is robust controller design for the underwater vehicle with parameter uncertainty. So, two robust control methods are applied for the underwater vehicle. One is standard $H_{\infty}$ control, and the other is time-varying sliding mode control with modified saturation function. Suboptimal design parameters for $H_{\infty}$ control, and design parameters for time-varying switching surfaces are provided Simulations for the two controllers are carried out and their performances are analyzed.lyzed.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Stereo Visual Odometry without Relying on RANSAC for the Measurement of Vehicle Motion (차량의 모션계측을 위한 RANSAC 의존 없는 스테레오 영상 거리계)

  • Song, Gwang-Yul;Lee, Joon-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.321-329
    • /
    • 2015
  • This paper addresses a new algorithm for a stereo visual odometry to measure the ego-motion of a vehicle. The new algorithm introduces an inlier grouping method based on Delaunay triangulation and vanishing point computation. Most visual odometry algorithms rely on RANSAC in choosing inliers. Those algorithms fluctuate largely in processing time between images and have different accuracy depending on the iteration number and the level of outliers. On the other hand, the new approach reduces the fluctuation in the processing time while providing accuracy corresponding to the RANSAC-based approaches.