• Title/Summary/Keyword: vehicle localization

Search Result 177, Processing Time 0.025 seconds

Source Localization of Induced Noise from a Rolling Wheel of Ground Vehicle (회전하는 바퀴 주위의 유동소음원)

  • Kwon Oh-Sub;Jang Keun-Jeoung;Lee Seungbae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.759-762
    • /
    • 2002
  • Automobile aeroacoustics Is a developing area of technology where experimental and theoretical tools are being continuously refined to understand, analyze and modify the noise-generating mechanisms in the vehicle flow. Main sources of ground vehicle exterior noise are the tires (tire/road interaction) and the unsteady flow field around the vehicle. In this study, the sound source localization of a rolling tire was applied to the measurement of radiated sound by using an acoustic mirror system. A possible flow pattern that develops is suggested based on detailed wind tunnel investigations with a rotating wheel in contact with a moving belt.

  • PDF

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

Path-planning using Modified Genetic Algorithm and SLAM based on Feature Map for Autonomous Vehicle (자율주행 장치를 위한 수정된 유전자 알고리즘을 이용한 경로계획과 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Heo, Jung-Min;Jung, Sung-Young;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.381-387
    • /
    • 2009
  • This paper is presented simultaneous localization and mapping (SLAM) based on feature map and path-planning using modified genetic algorithm for efficient driving of autonomous vehicle. The biggest problem for autonomous vehicle from now is environment adaptation. There are two cases that its new location is recognized in the new environment and is identified under unknown or new location in the map related kid-napping problem. In this paper, SLAM based on feature map using ultrasonic sensor is proposed to solved the environment adaptation problem in autonomous driving. And a modified genetic algorithm employed to optimize path-planning. We designed and built an autonomous vehicle. The proposed algorithm is applied the autonomous vehicle to show the performance. Experimental result, we verified that fast optimized path-planning and efficient SLAM is possible.

Localization with Two Optical Flow Sensors for Small Unmanned Ground Vehicles (두 개의 광류센서를 이용한 소형무인로봇의 위치 추정 기술)

  • Huh, Jinwook;Kang, Sincheon;Hyun, Dongjun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Localization is very important for the autonomous navigation of Unmanned Ground Vehicles; however, it is difficult that they have a precise Inertial Navigation System(INS) sensor, especially Small Unmanned Ground Vehicle(SUGV). Moreover, there are some condition such as denial of global position system(GPS), GPS/INS integrated system is not robust. This paper proposes the estimation algorithm with optical flow sensor and INS. Being compared with previous researches, the proposed algorithm is suitable for skid steering vehicles. We revised the measurement model of previous research for the accuracy of side direction position. Experimental results were performed to verify the algorithm, and the result showed an excellent performance.

Intensity Local Map Generation Using Data Accumulation and Precise Vehicle Localization Based on Intensity Map (데이터 누적을 이용한 반사도 지역 지도 생성과 반사도 지도 기반 정밀 차량 위치 추정)

  • Kim, Kyu-Won;Lee, Byung-Hyun;Im, Jun-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1046-1052
    • /
    • 2016
  • For the safe driving of autonomous vehicles, accurate position estimation is required. Generally, position error must be less than 1m because of lane keeping. However, GPS positioning error is more than 1m. Therefore, we must correct this error and a map matching algorithm is generally used. Especially, road marking intensity map have been used in many studies. In previous work, 3D LIDAR with many vertical layers was used to generate a local intensity map. Because it can be obtained sufficient longitudinal information for map matching. However, it is expensive and sufficient road marking information cannot be obtained in rush hour situations. In this paper, we propose a localization algorithm using an accumulated intensity local map. An accumulated intensity local map can be generated with sufficient longitudinal information using 3D LIDAR with a few vertical layers. Using this algorithm, we can also obtain sufficient intensity information in rush hour situations. Thus, it is possible to increase the reliability of the map matching and get accurate position estimation result. In the experimental result, the lateral RMS position error is about 0.12m and the longitudinal RMS error is about 0.19m.

A Real-time Vehicle Localization Algorithm for Autonomous Parking System (자율 주차 시스템을 위한 실시간 차량 추출 알고리즘)

  • Hahn, Jong-Woo;Choi, Young-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • This paper introduces a video based traffic monitoring system for detecting vehicles and obstacles on the road. To segment moving objects from image sequence, we adopt the background subtraction algorithm based on the local binary patterns (LBP). Recently, LBP based texture analysis techniques are becoming popular tools for various machine vision applications such as face recognition, object classification and so on. In this paper, we adopt an extension of LBP, called the Diagonal LBP (DLBP), to handle the background subtraction problem arise in vision-based autonomous parking systems. It reduces the code length of LBP by half and improves the computation complexity drastically. An edge based shadow removal and blob merging procedure are also applied to the foreground blobs, and a pose estimation technique is utilized for calculating the position and heading angle of the moving object precisely. Experimental results revealed that our system works well for real-time vehicle localization and tracking applications.

The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle (레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발)

  • Lee, Jeong-Yeob;Lee, Sang-Hoon;Kim, Jung-Ha;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

Two dimensional SLAM based on Directional Angles of Underwater Acoustic Sources using Two Hydrophone (두 개의 하이드로폰을 이용한 수중 음원 방향각 기반의 2차원 위치 인식 기법)

  • Choi, Jinwoo;Lee, Yeongjun;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • Localization of underwater vehicle is essential to use underwater robotic systems for various applications effectively. For this purpose, this paper presents a method of two-dimensional SLAM for underwater vehicles equipped with two hydrophones. The proposed method uses directional angles for underwater acoustic sources. A target signal transmitted from acoustic source is extracted using band-pass filters. Then, directional angles are estimated based on Bayesian process with generalized cross-correlation. The acquired angles are used as measurements for EKF-SLAM to estimate both vehicle location and locations of acoustic sources. Through these processes, the proposed method provides reliable estimation for two dimensional locations of underwater vehicles. Experimental results demonstrate the performance of the proposed method in a real sea environment.

VEHICLE LOCALIZATION METHOD USING THE IMAGES FOR CAR NAVIGATION SYSTEM

  • Lee, Seung-Yong;Joo, In-Hak;Cho, Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.573-575
    • /
    • 2007
  • Current accuracy of GPS is within the meter level, which is sufficient for route guidance of car navigation system(CNS). But receiving condition of GPS signal varies time to time according to surrounding objects such as building, trees, and terrain. For this reason, the performance of the route guidance is degraded in urban region. In this paper, to improve the performance of the route guidance of CNS, we propose a method for determining location of vehicle using a location of the traffic signal and its pixel size extracted from real-time Image.

  • PDF

Autonomous Navigation System of an Unmanned Aerial Vehicle for Structural Inspection (무인 구조물 검사를 위한 자율 비행 시스템)

  • Jung, Sungwook;Choi, Duckyu;Song, Seungwon;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.216-222
    • /
    • 2021
  • Recently, various robots are being used for the purpose of structural inspection or safety diagnosis, and their needs are also rising rapidly. Among the structural inspection using robots, a lot of researches has recently been conducted on inspection of various facilities and structures using an unmanned aerial vehicle (UAV). However, since GNSS (Global Navigation Satellite System) signals cannot be received in an environment near or below structures, the operation of UAVs has been done manually. For a stable autonomous flight without GNSS signals, additional technologies are required. This paper proposes the autonomous flight system for structural inspection consisting of simultaneous localization and mapping (SLAM), path planning, and controls. The experiments were conducted on an actual large bridge to verify the feasibility of the system, and especially the performance of the proposed SLAM algorithm was compared through comparative analysis with the state-of-the-art algorithms.