• Title/Summary/Keyword: vehicle emission

Search Result 702, Processing Time 0.024 seconds

Estimation of Vehicle's CO2 Emission using OBD-II Interface (OBD-II 인터페이스를 이용한 자동차 CO2 배출량 추정)

  • Jung, Kyung-Kwon;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.167-174
    • /
    • 2011
  • This paper described the estimation methods of CO2 emission of vehicles. The important of energy and environment has emerged in the world, and the field of vehicle's development as well. CO2 was particularly the object of emission-regulation that caused of global warming. There are performance comparison methods by driving mileage, International Panel on Climate Change (IPCC) and chemical equation for the combustion of Octane. We took the measurement by getting data through OBD-II port from vehicle covered 5 km on road. We got the diagnosis information, specific mileage and fuel consumption in this experiment. We are able to expect similar CO2 emission by the methods in the normal speed driving. Also, we can make more realistic approach of CO2 emission by the method of estimation by IPCC and chemical equation for the combustion of Octane in rapid acceleration driving.

Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle (휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성)

  • Park, Kyoung-Gyun;Kwon, Sang-Il;Lee, Woo-Suk;Hong, Ji-Hyung
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF

An Experimental Study on Reduction of $CO_2$ Exhausted Emission by using Fuel-cut Function of Vehicles (고속도로 주행 시 연료차단 기능을 활용한 $CO_2$ 배출량 감축에 대한 실험적 연구)

  • Ko, Kwang-Ho;Jeong, Seung-Hyun;Yoo, In-Kyoon;Lee, Soo-Hyung;Kim, Je-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.86-92
    • /
    • 2010
  • The fuel is not injected when the driver doesn't push acceleration pedal of a vehicle with engine speed higher than about 1,500rpm above mid vehicle speed range. This is called "fuel-cut function" and almost every modern vehicle is equipped with this function. This is activated on downhill part of a highway most often. Therefore the vehicle-exhausted $CO_2$ can be zero in this downhill part if the driver could recognize this part of highway. We compared the vehicle-exhausted $CO_2$ emission when using fuel-cut function with the $CO_2$ mass when without using this function in this study. We found that the $CO_2$ emission reduced with fuel-cut function and measured the reduction rate of vehicle-exhausted $CO_2$ mass with this test results. The exhausted $CO_2$ mass of a passenger car(2,000cc engine volume) is reduced by 4% with this function used. This $CO_2$ reduction effect can be achieved if the downhill part of a highway is painted with a specific color. And this road painting can be included in the highway road rehabilitation policy.

A Convergence Study on Improvement of Emission Regulation in Military Vehicle (군용차량 배출가스 규제 개선에 관한 융합적 고찰)

  • Yoon, Heung-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.181-186
    • /
    • 2020
  • Civil technologies and parts occupy big ratio in military vehicle as military supply goods were commercialized. In case of the military vehicle engine, the civil purposed engine has been militarized without developing engine for defense industry. Because of this, it happens that Euro-5 version is mounted in spite of Euro-6 at present because the civil laws on the civil purpose engine and required operational capability for militarization are applied by overlapping. Therefore, this study focused on current situation and issues on the military vehicle emission regulation and suggested how to improve through analyzing the theses, articles, Korean laws and systems. For improving methods, imposing the emission certification duty and exempting the certification for the vehicle of high strategical importance were suggested through aligning the related laws. Consequently, it is expected that this study will be used for basics of checking the civil laws and connection with military systems for commercialization of military supplied goods.

Emission Reduction using Unburned Exhaust Gas Ignition (미연배기가스 점화 기술을 이용한 배기저감)

  • 김득상;강봉균;양창석;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 2003
  • UEGI (Unburned Exhaust Gas Ignition) is an alternative method for fast light-off of a catalyst. It ignites the unburned exhaust mixture using two glow plugs installed in the upstream of the close-coupled catalysts. In addition, a hydrocarbon adsorber was applied to the UEGI, for more effective reduction of HC emission. Engine bench tests show that the CCC reaches the light-off temperature laster than the baseline exhaust system and HC and CO emissions are reduced significantly during the cold start. From the vehicle test, it was observed that a few amount of HC emission was reduced even the catalysts were aged. It is expected to develop a solution kit applicable to a new vehicle or used one, to meet the emission regulation

Fuel Economy and Emission Characteristics Evaluation by CVS-75 Mode Test and RDE(Real-road Driving Emissions) Test (CVS-75 모드 시험과 실도로 주행 시험을 통한 배출가스 및 연비 성능 평가)

  • Kang, Eunjeong;Um, Junsik;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2014
  • Recently EU has been recognized that there is a difference of emission quantity between emission certification test mode and real-road driving test. Accordingly the European Commission is currently preparing to require real-road testing as part of the passenger car type-approval process in the EU. vehicle manufacturers from 2017 are expected to test new vehicles not only under laboratory conditions but also on the real-road, using PEMS equipment. Therefore the purpose of this study is to analyze the emission and Fuel Economy of CVS-75 mode test using chassis dynamometer and RDE test using PEMS equipment by PHEV passenger car.

A Study on the Nano-particles Emission Exhausted from Diesel Passenger Vehicle According to Using Biodiesel (바이오디젤 사용에 따른 경유승용차의 나노입자 배출특성 연구)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2007
  • This paper is to investigate the characteristics of exhaust emissions and nano-particle emission from diesel passenger vehicle according to using biodiesel fuel as an alternative fuel. In this work, the particulate matters (PM) of exhaust emissions in diesel engine were investigated by number of particles and mass measurement. The mass of the total PM was measured using the standard gravimetric measurement method, the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). Total PM emission was reduced $2{\sim}38%$ and number concentration was reduced $1{\sim}27%$ according to increasing blended ratio of biodiesel with diesel fuel. Total PM emission was reduced more than particle number emission because volatile particles were measured in total PM but were not measured in particle number emissions.

  • PDF

Effects on CO2 and NOx Emissions at Real Driving Condition in the Passenger Car using Gasoline Fuel with Various Engine Displacements (휘발유 승용자동차의 엔진 배기량이 실도로 주행시 이산화탄소 및 질소산화물 배출에 미치는 영향)

  • Lee, Jongtae;Kim, Hyung Jun;Lim, Yun Sung;Yun, Chang Wan;Keel, Ji Hoon;Hong, You Deug
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.122-127
    • /
    • 2018
  • Recently, registrated passenger cars have increased and were close about seventy million at the end 2017 year in Korea. Among the passenger car using gasoline fuel make up forty six percentage of total registrated vehicles. In this study, investigation on real driving emission characteristics in the passenger car using gasoline fuel with various engine displacements were carried out. The real driving emission characteristics were measured and analyzed by using PEMS (Portable Emission Measurement System). PEMS was composed of gas analyzer, emission flow meter and sample conditioning system et al. Also, test six vehicles were selected to the gasoline passenger car with engine displacement from 1.6L to 3.7L. Two test routes with engine start of cold and hot conditions were applied to analyze the emission characteristics of RDE, respectively. The results show that the $CO_2$ emission have a increasing trend as the engine displacement and vehicle weight. Also, it is guessed that the $CO_2$ emission and vehicle weight were more correlated than the engine displacements. On the other hand, NOx emissions of RDE have not increasing or decreasing tendency according engine displacements or vehicle weight because the activation of three-way catalyst in the gasoline vehicles.

Experimental Study on the NO2/NOX Ratio from Exhaust of Diesel Vehicles by Chassis Dynamometer (경유자동차에서 배출되는 NO2/NOX 비율 특성)

  • KIM, SUNMOON;KIM, JOUNGHWA;JUNG, SUNGWOON;SUNG, KIJAE;KIM, JEONGSOO;KIM, INGU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.220-224
    • /
    • 2017
  • Nitrogen dioxide ($NO_2$) is an important urban pollutant in Korea. Expecially, diesel vehicles are responsible for the most traffic rated nitrogen oxide ($NO_X$) emission, including nitric oxide (NO) and nitrogen dioxide ($NO_2$). Though nitrogen oxide ($NO_X$) emission from vehicle was applied a strict enforcement of emission standard, the specific $NO_2$ fraction in $NO_X$ ($NO_2/NO_X$) from various types of diesel vehicles was not understood. In order to investigate the fraction of $NO_2/NO_X$, the vehicle emission study was carried out at the facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Three different types of diesel vehicles(VAN, SUV, passenger) were tested on the NIER driving mode. The result of $NO_2/NO_X$ ratio was over 0.1 for all test vehicles and the highest $NO_2$ emission was observed at the van vehicle. The observation was showed that the emission trend of $NO_2/NO_X$ for passenger and SUV vehicles were inversely proportional. Also, as the emission standard has been strengthen, the emission rate of $NO_2$ has been decrease.