• Title/Summary/Keyword: vehicle driving characteristics

Search Result 543, Processing Time 0.024 seconds

A Dynamic Behavior Evaluation of the Curved Rail according to Lateral Spring Stiffness of Track System (궤도시스템의 횡탄성에 따른 곡선부 레일의 동적거동평가)

  • Kim, Bag-Jin;Choi, Jung-Youl;Chun, Dae-Sung;Eom, Mac;Kang, Yun-Suk;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.517-528
    • /
    • 2007
  • Domestic or international existing researches regarding rail damage factors are focused on laying, vehicle conditions, driving speed and driving habits and overlook characteristics of track structure (elasticity, maintenance etc). Also in ballast track, as there is no special lateral spring stiffness of track also called as ballast lateral resistance in concrete track, generally, existing study shows concrete track has 2 time shorter life cycle for rail replacement than ballast track due to abrasion. As a result of domestic concrete track design and operation performance review, concrete track elasticity is lower than track elasticity of ballast track resulting higher damage on rail and tracks. Generally, concrete track has advantage in track elasticity adjustment than ballast track and in case of Europe, in concrete track design, it is recommended to have same or higher performance range of vertical elastic stiffness of ballast track but domestically or internationally review on lateral spring stiffness of track is very minimal. Therefore, through analysis of service line track on site measurement and analysis on performance of maintenance, in this research, dynamic characteristic behaviors of commonly used ballast and concrete track are studied to infer elasticity of service line track and experimentally prove effects of track lateral spring stiffness that influence curved rail damage as well as correlation between track elasticity by track system and rail damage to propose importance of appropriate elastic stiffness level for concrete and ballast track.

  • PDF

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

Dispersal of sugar beet cyst nematode (Heterodera schachtii) by water and soil in highland Chinese cabbage fields (고랭지 배추 재배지에서 사탕무씨스트선충의 물과 토양을 통한 포장 간 분산)

  • Kwon, Oh-Gyeong;Shin, Jin-Hee;Kabir, F. Md.;Lee, Jae-Kook;Lee, DongWoon
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.195-205
    • /
    • 2016
  • Sugar beet cyst nematode, Heterodera schachtii, causes serious economic losses worldwide in Brassicaceae crops. In 2011, this nematode was first found in highland vegetable cultivation areas in Korea, and thereafter spread to the surrounding healthy Chinese cabbage fields. However, little has been documented on the biological and ecological characteristics of the sugar beet nematode in highland vegetable cultivation areas. In this study the dispersal of the sugar beet cyst nematode was examined, focusing on spreading through soil and/or water infested with the nematode. When farmers with work boots trampled on Chinese cabbage fields for 10 minutes, the number of cysts recovered from the soil attached to the working differed depending on the research sites. Under irrigation conditions of 2, 4, and 8 liters of water per $m^2$, the amounts of soils attached on the bottom of the work boots and the number of healthy cysts in the soils increased significantly with the increase in soil moisture, although the total number of cysts, eggs, and juveniles did not increase significantly. After driving on the farm road adjacent to cabbage fields infested with the sugar beet cyst nematode, cysts were also recovered from the soil attached to the vehicle's tires, suggesting that the sugar beet cyst nematode can spread to new fields through soil carried by vehicles and by farmers. An excavator and a motor truck could deliver 41 kg and 224 g, respectively, of soil on the shovel shoes and the wheels to other locations during the Chinese cabbage harvest, suggesting that farming equipment and transportation vehicles may be vital means by which the cyst nematode spreads to non-infested fields in the highland area of Korea. Runoff water also contained cysts, whose amounts increased after water irrigation onto the ridges to simulate rainy conditions, with no significant difference in the number of cysts with increasing amounts of irrigation water. All of these results confirmed that the sugar beet cyst nematode spreads through soil attached to work boots, harvesting tools, and transportation vehicles, especially during the harvest time, and through runoff water on rainy days. These observations suggest that personal sanitization and cleaning of working tools and vehicles are one of the most important means to prevent the dispersal of the sugar beet cyst nematode in fields.