• 제목/요약/키워드: vehicle detection

검색결과 1,330건 처리시간 0.024초

Vehicle Orientation Detection Using CNN

  • Nguyen, Huu Thang;Kim, Jaemin
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.619-624
    • /
    • 2021
  • Vehicle orientation detection is a challenging task because the orientations of vehicles can vary in a wide range in captured images. The existing methods for oriented vehicle detection require too much computation time to be applied to a real-time system. We propose Rotate YOLO, which has a set of anchor boxes with multiple scales, ratios, and angles to predict bounding boxes. For estimating the orientation angle, we applied angle-related IoU with CIoU loss to solve the underivable problem from the calculation of SkewIoU. Evaluation results on three public datasets DLR Munich, VEDAI and UCAS-AOD demonstrate the efficiency of our approach.

자율주행차량을 위한 비젼 기반의 횡방향 제어 시스템 개발 (Development of Vision-based Lateral Control System for an Autonomous Navigation Vehicle)

  • 노광현
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.19-25
    • /
    • 2005
  • This paper presents a lateral control system for the autonomous navigation vehicle that was developed and tested by Robotics Centre of Ecole des Mines do Paris in France. A robust lane detection algorithm was developed for detecting different types of lane marker in the images taken by a CCD camera mounted on the vehicle. $^{RT}Maps$ that is a software framework far developing vision and data fusion applications, especially in a car was used for implementing lane detection and lateral control. The lateral control has been tested on the urban road in Paris and the demonstration has been shown to the public during IEEE Intelligent Vehicle Symposium 2002. Over 100 people experienced the automatic lateral control. The demo vehicle could run at a speed of 130km1h in the straight road and 50km/h in high curvature road stably.

도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 (Deep Learning-based Vehicle Anomaly Detection using Road CCTV Data)

  • 신동훈;백지원;박찬홍;정경용
    • 한국융합학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2021
  • 현대사회에서는 차량을 소유하는 사람들이 증가하면서 교통문제가 발생하고 있다. 특히 고속도로 교통사고 문제는 발생률이 낮지만 치사율은 높다. 따라서 차량의 이상을 탐지하는 기술이 연구되고 있다. 이 중에는 딥러닝을 이용한 차량 이상탐지 기술이 있다. 이는 사고 및 엔진고장으로 인한 정차차량 등의 차량 이상을 탐지한다. 그러나 도로에서 이상이 발생할 경우 운전자의 위치를 파악할 수 있어야 빠른 대처가 가능하다. 따라서 본 연구에서는 도로 CCTV 데이터를 활용한 딥러닝 기반 차량 이상 감지 방법을 제안한다. 제안하는 방법은 먼저 도로 CCTV 데이터를 전처리한다. 전처리는 배경 추출 알고리즘인 MOG2를 이용하여 배경과 전경을 분리한다. 전경은 변위가 존재하는 차량을 의미하며 도로 위에서 이상이 존재하는 차는 변위가 없어 배경으로 판단된다. 배경이 추출된 이미지는 이상을 탐지하기 위해 YOLOv4를 이용하여 객체를 탐지한다. 해당 차량은 이상이 있음으로 판단한다.

Implementation of Vehicle Plate Recognition Using Depth Camera

  • Choi, Eun-seok;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • 제6권3호
    • /
    • pp.119-124
    • /
    • 2019
  • In this paper, a method of detecting vehicle plates through depth pictures is proposed. A vehicle plate can be recognized by detecting the plane areas. First, plane factors of each square block are calculated. After that, the same plane areas are grouped by comparing the neighboring blocks to whether they are similar planes. Width and height for the detected plane area are obtained. If the height and width are matched to an actual vehicle plate, the area is recognized as a vehicle plate. Simulations results show that the recognition rates for the proposed method are about 87.8%.

실시간 차량 검지를 위한 펄스 레이더 신호처리 알고리즘 (Real-time Pulse Radar Signal Processing Algorithm for Vehicle Detection)

  • 류석경;우광준
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.353-357
    • /
    • 2006
  • The vehicle detection method using pulse radar has the advantage of maintenance in comparison with loop detection method. We propose the pulse radar signal processing algorithm in which we devide the trace. data from pulse radar into segments by using SSC concept, and then construct the sectors in accordance with period and amplitude of segments, and finally decide the vehicle detection probability by applying the SSC parameters of each sectors into the discriminant function. We also improve the signal processing time by reducing the quantities of processing data and processing routines.

Detection Filter를 적용한 two-motor구동방식 전기자동차의 고장감지에 관한 연구 (Application of the fault detection filter to detect the dynamic faults of a two-motor driven electric vehicle system)

  • 김병기;장태규;박정우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.341-344
    • /
    • 1997
  • This paper presents a dynamics failure detection algorithm developed for the two-motor-driven electric vehicle system. The algorithm is based on the application of the fault detection filter. The fault detection includes the identification of sudden pressure drops of the two rear tires in driving axis and dynamics faults of the two inverter-motor-paired actuators An E.V. dynamics simulator is developed, which includes the modeling of the E.V. dynamics as well as the driving dynamics. The simulator, which allows the generation of various fault situations, is utilized in the verification of the developed fault detection algorithm. The results of the simulations are also presented.

  • PDF

사각지역경보시스템을 위한 실시간 측후방 차량검출 알고리즘 (Real-Time Side-Rear Vehicle Detection Algorithm for Blind Spot Warning Systems)

  • 강현우;백장운;한병길;정윤수
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권7호
    • /
    • pp.408-416
    • /
    • 2017
  • 본 논문에서는 주행 중 사각지역내의 차량을 빠르고 정확하게 실시간으로 검출하는 측후방 차량 검출 알고리즘을 제안한다. 제안 알고리즘은 실시간 처리를 위해 MCT(Modified Census Transformation) 특징벡터를 기반으로 에이다부스트 학습을 통해 생성되는 캐스케이드 분류기를 사용한다. MCT 분류기는 검출윈도우가 작을수록 처리속도가 빠르고, 검출윈도우가 클수록 정확도가 증가한다. 제안 알고리즘은 이러한 특징을 이용하여 검출윈도우가 작은 분류기로 차량후보를 빠르게 생성한 후 보다 큰 사이즈의 검출윈도우를 가지는 분류기로 생성된 차량후보에 대해 정확하게 차량인지 검증한다. 또한, 차량분류기와 바퀴분류기를 동시에 사용하여 사각지역내로 진입하는 차량과 사각지역내의 인접차량을 효과적으로 검출한다.

불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법 (A vehicle detection and tracking algorithm for supervision of illegal parking)

  • 김승균;김효각;장동니;박상희;고성제
    • 전기전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.232-240
    • /
    • 2009
  • 본 논문은 불법 주정차 단속을 위한 정지 차량 검지 및 추적 기법을 제안한다. 제안하는 알고리즘은 크게 네 부분으로 구성되어 있다. 먼저, 입력 영상으로부터 움직이는 차량을 구분하기 위하여 향상된 코드북 물체 검지 알고리즘을 이용한 차량 검지 알고리즘을 제안한다. 두 번째로 차량의 기하학적 특징을 이용하여 차량이 아닌 물체는 제외시키는 전처리 기법을 사용한다. 그런 다음, 검지된 결과 차량들을 히스토그램 추적 기법과 칼만 필터를 결합한 추적 알고리즘을 이용하여 추적한다. 추적 결과를 더 정확하게 하기 위하여, 히스토그램 추적 결과를 칼만 필터의 측정 데이터로 사용한다. 마지막으로, 정지 차량 검지 알고리즘의 신뢰성 있고 정확한 성능을 위하여 실제 정지 카운터 (RSC)를 제안한다. 실험결과로부터 제안한 시스템은 복잡한 실제 도로 환경에서도 여러 차량을 동시에 추적할 수 있고, 정지 차량을 성공적으로 검지해냄을 확인한다.

  • PDF

차량의 부분 특징을 이용한 터널 내에서의 차량 검출 및 추적 알고리즘 (A Vehicle Detection and Tracking Algorithm Using Local Features of The Vehicle in Tunnel)

  • 김현태;김규영;도진규;박장식
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1179-1186
    • /
    • 2013
  • 본 논문에서는 터널 내에서 차량의 운행 상태를 모니터링하기 위하여 차량 검출 및 추적 알고리즘을 제안한다. 제안하는 알고리즘은 세 단계로 이루어진다. 첫 단계는 배경추정으로서 비교적 간단한 Running Gaussian Average (RGA)를 사용한다. 두 번째 단계는 차량검출 단계이며, Adaboost 알고리즘을 적용한다. 상대적으로 먼거리의 차량에 대한 오검출을 줄이기 위하여 차량의 높이별 부분 특징을 이용하여 차량을 검출한다. 물체의 부분 특징들이 임계값 이상이면 차량으로 분류한다. 마지막 단계는 차량추적 단계이며, Kalman 필터를 적용하여 이동하는 물체를 추적한다. 컴퓨터 시뮬레이션을 통하여 제안하는 알고리즘이 터널 내에서 차량 검출 및 추적에 유용한 것을 확인하였다.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.