• Title/Summary/Keyword: vehicle defect

Search Result 97, Processing Time 0.031 seconds

Evaluation of Diecasting Mold Cooling Ability by Decompression Cooling System (감압냉각장치를 이용한 다이캐스팅 금형의 냉각성능평가)

  • Kim, Eok-Soo;Park, Joo-Yul;Kim, Yong-Hyun;Son, Gi-Man;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.238-243
    • /
    • 2009
  • This study has been carried out to investigate the cooling ability improvement of diecasting mold by decompression cooling system. The decompression cooling system was applied to the new/used oil pump cover molds. The temperature of the surface mold applied the decompression cooling system fell to 15 degrees, especially in case of the used mold. The defect ratio of the oil pump cover manufactured by decompression cooling system has decreased from 2.8 percent to 0.2 percent. According to the results of the cooling ability improvement of diecasting mold by decompression cooling system, the decompression degree and supply pressure were set up the control item to apply the decompression cooling system to the diecasting mold in the industry field.

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

Massive traumatic abdominal wall hernia in pediatric multitrauma in Australia: a case report

  • Sarah Douglas-Seidl;Camille Wu
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.447-450
    • /
    • 2023
  • Traumatic abdominal wall hernia is a rare presentation, most commonly reported in the context of motor vehicle accidents and associated with blunt abdominal injuries and handlebar injuries in the pediatric population. A 13-year-old boy presented with multiple traumatic injuries and hemodynamic instability after a high-speed motor vehicle accident. His injuries consisted of massive traumatic abdominal wall hernia (grade 4) with bowel injury and perforation, blunt aortic injury, a Chance fracture, hemopneumothorax, and a humeral shaft fracture. Initial surgical management included partial resection of the terminal ileum, sigmoid colon, and descending colon. Laparostomy was managed with negative pressure wound therapy. The patient underwent skin-only primary closure of the abdominal wall and required multiple returns to theatre for debridement, dressing changes, and repair of other injuries. Various surgical management options for abdominal wall closure were considered. In total, he underwent 36 procedures. The multiple injuries had competing management aims, which required close collaboration between specialist clinicians to form an individualized management plan. The severity and complexity of this injury was of a scale not previously experienced by many clinicians and benefited from intrahospital and interhospital specialist collaboration. The ideal aim of primary surgical repair was not possible in this case of a giant abdominal wall defect.

The Displacement Limit at the End of an Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도 부설 교량의 접속슬래브 단부 처짐한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab could be installed to prevent such a phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and increasing the track deteriorations by excessive impact force acting on the track. In this study, parametric studies were performed to investigate the displacement limit on the approach slab to avoid such problems. The length and the amount of unequal settlement of approach slab were adopted as parameter for numerical analysis considering vehicle-track interaction. Car body accelerations, variations of wheel force, stresses in rail, and uplift forces induced on fastener clip were investigated. From the result, resonable settlement limit on the end of an approach slab according to slab length was suggested.

ESTIMATION OF FATIGUE LIFE BY LETHARGY COEFFICIENT USING MOLECULAR DYNAMIC SIMULATION

  • Song, J.H.;Noh, H.G.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.215-219
    • /
    • 2004
  • A vehicle structure needs to be more precisely analyzed because of complexities and varieties. Structural fatigue which is generated by fluctuations of stresses during the service life of a mechanical system is the primary concern in the structural design for safety. A fatigue life is difficult to obtain in structural components during the service life of mechanical systems since the fluctuating stress contributes to fatigue. This study introduces new procedures to measure the lethargy coefficient and to predict the fatigue life of a mechanical structure by using molecular dynamic simulation. A lethargy coefficient is the total defect-estimating coefficient, which was obtained by using the results of a simple tensile test in this study. With this lethargy coefficient, fatigue life was estimated. The proposed method will be useful in predicting the fatigue life of a structurally-modified vehicle design. The effectiveness of the proposed method using lethargy coefficient measurement to predict the fatigue life of a structure was examined by applying this method to predict the fatigue life of SS41 steel, used extensively as material of vehicle structures. Two types of specimen such as pre-cracked plate and simple plate is discussed. equation of fatigue life using the lethargy coefficient and failure time, both obtained from a simple tensile test, will be useful in engineering. This measurement and prediction technology will be extended for use in analysis of any geometric shapes of modified automotive structures.

Analysis on the Fire Accidents Vehicles Caused by Faults in the Same Anti-lock Brake System (ABS) of the same Manufacturer (동일한 제조사의 ABS 모듈 결함으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Lee, Dong-Kyu;Cho, Young-Jin;Moon, Byung-Sun;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.121-127
    • /
    • 2019
  • This study examined a fire accident caused by a defect in the vehicle ABS module. A large number of vehicles using the same manufacturer's ABS module in recent fire events showed a tendency to combust due to the same faults. As previously stated in the ABS module which shows the electrical breakdown between the power lines supplied to the constant power source by the battery. The electrical breakdown of the ABS module was caused by defects of the ABS module itself that were influenced by of the external flame. These results highlight the need to determine if there is a deficiency of the ABS module in the investigation of the cause of a fire in a vehicle which is produced by the same manufacturer.

Experimental study to investigate the structural integrity of welded vehicle structure for BSR (Buzz, Squeak, Rattle) noise by vibration measurement (진동 특성을 이용한 접합된 차량 구조의 BSR(Buzz, Squeak, Rattle) 소음 강건성 관측에 대한 실험연구)

  • Kwak, Yunsang;Lee, Jongho;Park, Junhong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.334-339
    • /
    • 2019
  • In this study, the vibration test method to nondestructively evaluate the possibility of vehicle BSR (Buzz, Squeak, Rattle) noise generation in spot-welded structures was proposed. The weld quality was predicted by analyzing the local vibration transmission characteristics for the beam-shaped structure attached to testing spots. The bending stiffness was evaluated from the identified vibration properties. From the change in the stiffness, the weld quality was evaluated. For verification of the proposed method, the welded specimens were fabricated with partial changes in welding parameters. The local vibration transfers were measured. The frequency bands affected by the weld quality was identified. The capability of evaluating the welding parameters including defect position and quality variations was investigated. The proposed method enables fast quality evaluation to minimize the possibility of BSR noise generation in the manufactured vehicle.

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.

Design of Chattering Free Sliding Mode Controller for AUV (무인 수중 잠수정을 위한 채터링이 없는 슬라이딩 모드 제어기 설계)

  • Kim, Hyoung-Joo;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1850-1851
    • /
    • 2006
  • The sliding mode control is acceptable for Autonomous Underwater Vehicle(AUV), since the dynamics of AUV are highly nonlinear and have several parameter uncertainty such as the added mass terms, the hydrodynamic coefficients. The sliding mode control can deal well with nonlinearity of the system and offers a robustness to controller with parameter uncertainty. Since sliding mode control has the defect of chattering problem, only in ideal case the actuator can respond by control law. Therefore we propose the sliding mode control with non-chattering. And computer simulations illustrate the performance of the proposed controller.

  • PDF

Research for Defect Detection Using Pressing Sound of Vehicle Plate (자동차용 판재의 프레스 가공시 방출되는 음향을 이용한 결함 검출에 관한 연구)

  • 하성윤;최환도;이대훈;전언찬;김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1113-1116
    • /
    • 2003
  • In this paper, it is suggested that the technology sound measurement which is to search the inferiority of the plate during the pressing. We evaluate whether there is a inferiority by analysing and comparing the satisfactory and inferior plate with the method of a spectrum analysis by measuring the sound which is emitted during pressing. We designed the analysis algorithm to detect inferior plate throughout comparison of measured sound data using FFT, DFT and DASYLab S/W. In addition to these, we suggest the way to compare both inferior and satisfactory signal statistically.

  • PDF