• 제목/요약/키워드: vegetation-plant

Search Result 1,333, Processing Time 0.025 seconds

The Optimal Environmental Ranges for Wetland Plants: II. Scirpus tabernaemontani and Typha latifolia

  • Lee, Bo-Ah;Kwon, Gi-Jin;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.151-159
    • /
    • 2007
  • We studied the optimal ranges of water and soil characteristics for wetland plants, particularly Scirpus tabernaemontani (softstem bulrush) and Typha latifolia (broadleaf cattail), which are dominant species with potential for restoration of Korean wetlands. We observed vegetation in S. tabernaemontani and T. latifolia communities from the mid to late June, 2005, and measured characteristics of water environments such as water depth (WD), temperature (WT), conductivity (WC), and concentration of several ions $(NO_3{^-}-N,\;Ca^{2+},\;Na^+,\;Mg^{2+},\;and\;K^+)$, and characteristics of soil environments such as soil texture, organic matter (loss on ignition, LOI), conductivity, and pH. The S. tabernaemontani community was accompanied by Zizania latifolia (Manchurian wildrice), Persicaria thunbergii (Korean persicary), Actinostemma lobatum (lobed actinostemma), and Beckmannia syzigachne (American slough grass), while the T. latifolia community was accompanied by P. thunbergii, T. angustifolia (narrowleaf cattail), and Glycine soja (wild soybean). We defined the optimal range for distribution (ORD) as the range that each plant was crowded. The optimal range of water characteristics for the S. tabernaemontani community was a $WD\;10{\sim}50cm,\;WT\;24.0{\sim}32.0^{\circ}C,\;WC\;100{\sim}500{\mu}S/cm,\;{NO_3}{^-}-N\;0{\sim}60ppb,\;K^+\;0.00{\sim}1.50ppm,\;Ca^{2+}\;7.50{\sim}17.50ppm,\; Na^+\;2.50{\sim}12.50ppm,\;and\;Mg^{2+}\;3.00{\sim}7.00ppm$. In addition, the optimal range of soil characteristics for the S. tabernaemontani community was a soil texture of loam, silty loam, and loamy sand, $LOI\;8.0{\sim}16.0%,\;pH\;5.25{\sim}6.25$, and conductivity $10{\sim}70{\mu}S/cm$. The optimal range of water characteristics for the T. latifolia community was a $WD\;10{\sim}30cm,\;WT\;22.5{\sim}27.5^{\circ}C,\;WC\;100{\sim}400{\mu}S/cm,\;{NO_3}{^-}-N\;0{\sim}60ppb,\;K^+\;0.00{\sim}1.50ppm,\;Ca^{2+}\;0.00{\sim}17.50ppm,\;Na^+\;0.00{\sim}12.50ppm,\;and\;Mg^{2+}\;0.00{\sim}5.00ppm$, and the optimal range of soil characteristics for the T. fatifolia community was a soil texture of loam, sandy loam, and silty loam, LOI $3.0{\sim}9.0%,\;pH\;5.25{\sim}7.25$, and conductivity $0{\sim}70{\mu}S/cm$.

The Study of Distribution Changing and Community Characteristics of Daphniphyllum macropodum (National Monument No. 91) in Naejangsan National Park (내장산국립공원 굴거리나무군락의 군집특성 및 분포 변화 연구)

  • Shin, Jin-Ho;Jeon, Yong-Sam;Son, Ji-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.45-57
    • /
    • 2016
  • This study was focused on the northernmost limit of the distribution changing of Daphniphyllum macropodum and studied characteristic of plant communities of natural monument No. 91 in Najangsan national park, Korea. The results of this study were as follows : 1. The highest importance percentage(I.P.) value at tree layer in Quercus. mongolica community was Q. mongolica, 37.8%. But the highest value of mean importance percentage(M.I.P.) was D. macropodum, 32.8%. 2. The highest I.P. value at tree layer in Carpinus laxiflora community was C. laxiflora, 47.4%. The highest M.I.P. value was C. laxiflora, 28.8% and M.I.P. value of D. macropodum was 24.0%. 3. The highest I.P. value at tree layer in D. macropodum community was D. macropodum, 55.6%. C. laxiflora and Q. mogolica I.P. value was 14.8% and 6.8%, respectively. The highest M.I.P. value was D. macropodum, 47.9%. Sapium japonicum and C. laxiflora M.I.P. value was 11.4% and 10.7%, respectively. 4. The highest I.P. value at tree layer in Quercus variabilis community was C. laxiflora, 20.8%. Q. variabilis and Acer pseudosieboldianum I.P. value was 15.3% and 12.5%, respectively. The highest M.I.P. value was D. macropodum, 21.5%. It needs to the continuous monitoring of vegetation and importance percentage change in tree layer and subtree layer of D. macropodum. The researching results of D. macropodum distribution, the distribution range of D. macropodum showed expanded more than range of Lim and Oh' result(1999). In other words, it was distributed low density level between Najangsa temple and Byeokryeonam, and distributed in upper Keumsun waterfall and Wonjeok upper valley. D. macropodum was appeared on hiking trails around from Wonjeokam to Bulchulbong. Especially, it was found in this study that D. macropodum was distributed on Seoraebong's north which placed outside area of Naejangsa region. In this study, it was considered that distribution range of D. macropodum was expanded. Also, it is expected to be used as a result of the field study of changing distribution study of broad leaved evergreen forest due to global warming.

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.

Physical and Chemical Properties of Cover Soils of waste Landfills in Kyonggi-Do Area (경기도 지역 쓰레기 매립지 복토층 토양의 이화학성)

  • 이상모;김기대;이은주;김판기;이군택
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2002
  • The physical and chemical properties of cover soils of 10 waste landfill sites in Kyonggi-Do area, where social circumstances at present forces to consider the reuse of landfill, were investigated to provide the informations of soil environment which are necessary to establish the appropriate ecological restoration plan of waste landfills. The pH and electrical conductivity of soils were higher in landfills sites than in reference sites (area around landfill sites), indicating the salt accumulation in surface soil. However, total-N and organic matter contents were lower in landfills sites than in reference sites. In landfill sites, the total-N and plant available-P contents were less than 0.15% and 20mg/kg, respectively. Exchangeable cations (K, Ca, Mg and Na) and heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) contents varied between the landfill sites, but were higher in landfills sites than in reference sites. The major exchangeable cation of soil was Ca. Heavy metal contents were much lower than the critical concentration which phytotoxicity is considered to be possible and the standard for agricultural land of Korean Soil Environmental Preservation Act. Therefore, the proper soil management plan to increase the soil fertility is recommended for the ecological restoration of landfill using natural or artificial vegetation.

Inhabitation Characteristics of Sphagnum palustre in Abandoned Paddy Terrace Wetland: a Case Report in Ansan (계단식 묵논습지에서의 물이끼 서식 특성: 안산시 사례를 중심으로)

  • Hong, Mun-Gi;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • An exceptional case of inhabitation of a Sphagnum sp. was firstly confirmed at abandoned paddy terrace (APT) wetland in Ansan. Water sampling for analyzing of physicochemical conditions including nutrients such as NP, $Ca^{2+}$ and $Mg^{2+}$ was performed and the vegetation map for distribution of Sphagnum sp., topographical map, and flora list for companion species were made at field in June 2011. From the results, the Sphagnum sp. in the study site was identified as S. palustre and it covered about 8% of the wetland cover of 3,200 $m^2$. Most distributions of S. palustre were observed at tussock structures as micro-topography by sedges and grasses within a wetland (74%) and the shaded slope area under Pinus densiflora's canopy in wetland boundary (26%). Despite that APT in Ansan is relatively lower wetland in altitude than high moors, the contents of calcium ($0.45{\pm}0.2$) and magnesium ($1.48{\pm}0.6$) ion which are critical limiting factors for Sphagnum spp. were very low levels as well as NP ($PO_4$-P, $0.02{\pm}0.0$; $NO_3$-N, $0.25{\pm}0.3$; $NH_4$-N, $0.06{\pm}0.1$) and it could enable the inhabitation of S. palustre in lower APT.

Flow response and habitat region of aquatic plants in urban streams (도심하천 수생식물의 흐름에 대한 대응 분석 및 식재영역 결정)

  • Kim, Seonghwan;Cho, Gyewoon;Kim, Jin-Hong
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • This study presents the flow response and habitat region of the aquatic plants in the urban streams. Phragmites japonica, Phragmites communis, Miscanthus sacchariflorus, Persicaria blumei and Persicaria thunbergii were selected as for typical plants. Flow response and habitat region were determined by flow velocity/depth and vegetation growth. Stages for flow response of the aquatic plants were classified into stable, recovered, damaged and swept away. Criteria between the recovered and damaged stage was determined by the bending angle of $30{\sim}50^{\circ}$. Capability against flow was high in the order of Phragmites japonica, Phragmites communis, Miscanthus sacchariflorus, Persicaria blumei and Persicaria thunbergi. Phragmites japonica and Phragmites communis were capable of coping with flow depth 0.9 m, flow velocity 1.5 m/s and with flow depth 1.0 m, flow velocity 0.9 m/s, respectively. Miscanthus sacchariflorus was capable within the region of flow depth 1.0 m and flow velocity 0.6 m/s. Persicaria blumei and Persicaria thunbergii were less capable than the other aquatic plants and were vulnerable exceeding the water depth of 1.0 m. Habitat regions by the flow response of each plants were suggested.

Interpretation of Weeding Efficacy by Mixture Use of Herbicide Combination, Oxyfluorfen and Glyphosate (Oxyfluorfen과 Glyphosate 조합처리(組合處理) 모형(模型)의 혼용효과(混用效果)에 대한 해석적연구(解釋的硏究))

  • Guh, J.O.;Cho, Y.W.;Lee, K.H.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.236-242
    • /
    • 1987
  • The study was conducted to interprete the fluctuation of weed vegetation in plant-sociological impacts as affected by the mixture use of oxyfluorfen and glyphosate with various dosages. Also, intended to know the real interaction between two herbicides in weeding efficacies. The better efficacy from the above mixture was recognized than from the oxyfluorfen + paraquat mixture on the perennial-sites. In lower rate mixture of oxyfluorfen, the dominance index was increased by the annual grass species (ie. Digitaria), and of glyphosate by the biennial Stellaria and perennial species (ie. Artemisia). Also, the positive maximum action of both oxyfluorfen and glyphosate in various mixture rates was categorized upto 0.55kg ai/ha for oxyfluorfen and 0.35kg ai/ha for glyphosate, respectively. However, the interaction between the above two herbicides recognized actually as negative. Consequently, the use of mixture compound of oxyfluorfen with glyphosate are expected rather to promote the control efficacy of specific weed species, to enlarge the weeding spectrum and to prolong the weeding periods than to reduce the application rate of both chemicals depending on any synergic interactions.

  • PDF

Studies on the productivity of the Native Reed ( Phragmites communis Trinius ) during the period of Vegetation (갈대 생산력에 관한 연구 I. 생육시기에 따른 생산성의 변화)

  • Chun, W.B.;Yoon, C.;Lee, J.Y.;Park, J.M.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.2
    • /
    • pp.89-97
    • /
    • 1983
  • This experiment was carried out in order to study the effect of seasonal changes and location differences on the productivity of the native reed (Phragmites Communis Trinius). The samples of reed were taken at about 30-days interval from May to October, 1982, on the open field of the reclaimed land, the river bank and the tideland in Chonnam area, and measured the yield, the feed compositions and in vitro dry-matter digestibility(IVD). The results are summarized as follow: 1. Plant height was rapidly heightened in May and June, and the number of leaves rapidly increased from May to August. However, dry matter yield increased until September and gradually decreased thereafter. 2. In general, the content of crude protein and the in vitro dry matter digestibility decreased with ageing, and the content of fiber increased. 3. Considerable difference by location in the chemical composition including $SiO_2$, Ca and P was observed. 4. There was a significant negative correlation (p<0.05) between the content of crude protein and that of crude fiber. There was a significant positive correlation(p<0.05) between the in vitro dry-matter digestibility(IVD) by two-stage method and the content of crude protein, and also was a significant negative correlation(p<0.05) between the content of fiber and that of crude protein.

  • PDF

Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots (잔탄검 혼합에 따른 카멜리나 뿌리의 알루미늄 독성 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Sehee;Kim, Eunsuk;Jang, Ha-young;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • Biopolymers have been known as eco-friendly soil strengthening materials and studied to apply levees. However, the effect of biopolymer on vegetation is not fully understood. In this study, we analyzed the root growth of Camelina sativa L. (Camelina) when the xanthan gum was amended to soil in Aluminum (Al) stress conditions. Amendment of 0.05% xanthan gum increased root growth of Camelina under Al stress conditions. Under the Al stress condition, expression of aluminum activate malate transporter 1 (ALMT1) gene of Camelina root was induced but showed a lower level of expression in xanthan gum amended soil than non-amended soil. Additionally, the binding capacity of xanthan gum with Al ions in the solution was confirmed. Using morin staining and ICP-OES analysis, the Al content of the roots in the xanthan gum soil was lower than in the non-xanthan gum soil. These results suggest that xanthan gum amended soils may reduce the detrimental effects of Al on the roots and positively affect the growth of plants. Therefore, xanthan gum is not only an eco-friendly construction material but also can protect the roots in the disadvantageous environment of the plant.

Analysis of Environmental Equity of Green Space Services in Seoul - The Case of Jung-gu, Seongdong-gu and Dongdaemun-gu - (서울지역 녹지서비스의 환경형평성 분석 - 중구, 성동구, 동대문구를 사례로 -)

  • Ko, Young Joo;Cho, Ki-Hwan;Kim, Woo-Chan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.100-116
    • /
    • 2019
  • Urban green spaces, as a means to mitigate social problems and environmental risks, are getting more attention in evaluating urban environment. The inequity of green space distribution is becoming a major issue in urban planning and management. This study investigated the characteristics of green space in 3 districts (Jung-gu, Dongdaemun-gu, Seongdong-gu), that are composed of 46 administrative divisions in central Seoul, to analyze the environmental equity of urban green spaces. The correlations between the amount of green space, including the coverage of street trees, and the socioeconomic status of each administrative division were analyzed. To deduce the effects of plant coverage on the urban temperature regime, the relationship between the normalized difference of vegetation index (NDVI) and land surface temperature (LST) was analyzed. The research revealed that the mean NDVI of an administrative division was negatively correlated with the percentage of basic living recipients and disabled people. The LST of a division with low NDVI was higher due to the lack of green coverage. Such environmental inequities were closely related to residential building type, which was strongly affected by the economic status of residents. The LST of an apartment area was $2.0^{\circ}C$ lower than that of single-family houses and multi-housing areas. This is expected as the average NDVI of the apartment area was more than twice as high as the other environments considered in this study. The inequity can be exacerbated without urban planning which is deliberately designed to reduce it.