• 제목/요약/키워드: vegetation cover

Search Result 542, Processing Time 0.034 seconds

Pasture Vegetation Changes in Mongolia

  • Erdenetuya, M.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.105-106
    • /
    • 2004
  • The NDVI(normalized difference vegetation index) dataset is unique or main tool to assess the global, multi seasonal, multi annual, and multi spectral changes over the World. These features are useful for environmental studies in particular, for the vegetation coverage monitoring of the country as Mongolia, where are large pastureland and pastoral animal husbandry, which dependent on natural conditions. Pasture vegetation cover is changing accordingly with both of global climate change and anthropogenic effect or human impacts. Using past 20 years (1982-2001) NDVI derived from NOAA satellite, its dynamical trend has been decreased in all natural zones differently. Also applied the method named "Two Years Differences" which could calculate the number of years with increased or decreased NDVI values at the same place. From May to September have occurred the 9 years maximum decreases of NDVI over Mongolia, but it obtained differently in spatial and temporal scale. In 24.4 ? 32.7% of all territory occurred one year decrease of NDVI and in 18% occurred more than 3 years frequent decrease of NDVI. According to the linear trend of NDVI and in 18% occurred more than 3 years frequent decrease of NDVI dynamics over 69% of whole territory of Mongolia NDVI values had been decreased due to both natural and human induced impacts to the pasture condition. In this paper also included some results of the integrated analyses of NOAA/NDVI and ground truth data over Monglia separately by natural zones.

  • PDF

Vegetation of the Khogno Khan Natural Reserve, Mongolia

  • Gombosuren, Tsolmon;Kim, Jong-Won
    • The Korean Journal of Ecology
    • /
    • v.24 no.6
    • /
    • pp.365-370
    • /
    • 2001
  • The vegetation of the Khogno Khan Natural Reserve of the central Mongolia was studied in terms of the Zurich-Montpellier School's method. Twenty plant communities were identified from the three different landscape types such as mountain areas(63%), plains(32%), and wetlands(5%). Actual vegetation map using five vegetation domains was accomplished in order to understand the spatial distribution of regional vegetation. Steppe vegetation of 88% vegetation cover to the whole area is representative, which is composed of a matrix of landscape. The birch-aspen forests and the elm bush forests are relics as a patch distribution. It is recognized that the whole territory of protected area be under the effects of severe grazing from the phytosociological viewpoint.

  • PDF

Development and Application of Impact Assessment Model of Forest Vegetation by Land Developments (개발사업에 따른 산림식생 영향평가모형 개발 및 적용)

  • Lee, Dong-Kun;Kim, Eun-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.6
    • /
    • pp.123-130
    • /
    • 2009
  • Fragmentation due to land developments causes disturbances and changes of composition in forest vegetation. The purpose of the study was to develop the impact assessment model for quantitative distance or degree of disturbance by land developments. This study conducted a survey about structure and composition of forest vegetation to determine degree of impact from land developments. The results of field survey, there was a difference in structure and composition of forest vegetation such as tree canopy, herbaceous cover, and number of vine and alien species the distances from edge to interior area such as 0m, 10m, 20m, 40m, and over 60m. To assess the disturbance of forest vegetation, the factors selected were the rate of vine's cover and appearance of alien species. The impact assessment model about vine species explained by a distance, forest patch size, type of forest fragmentation, and type of vegetation ($R^2$=0.44, p<0.001). The other model about alien species explained by a distance, type of forest fragmentation, type of vegetation, and width of road (85.9%, p<0.005). The models applied to Samsong housing development in Goyang-si, Gyunggi-do. The vines and alien species in the study area have had a substantial impact on forest vegetation from edge to 20 or 40m. The impact assessment models were high reliability for estimating impacts to land developments. The impact of forest vegetation by development activities could be minimized thorough the adoption of the models introduced at the stage of EIA.

Vegetation Mapping of Hawaiian Coastal Lowland Using Remotely Sensed Data (원격탐사 자료를 이용한 하와이 해안지역 식생 분류)

  • Park, Sun-Yurp
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.4
    • /
    • pp.496-507
    • /
    • 2006
  • A hybrid approach integrating both high-resolution and hyperspectral data sets was used to map vegetation cover of a coastal lowland area in the Hawaii Volcanoes National Park. Three common grass species (broomsedge, natal redtop, and pili) and other non-grass species, primarily shrubs, were focused in the study. A 3-step, hybrid approach, combining an unsupervised and a supervised classification schemes, was applied to the vegetation mapping. First, the IKONOS 1-m high-resolution data were classified to create a binary image (vegetated vs. non--vegetated) and converted to 20-meter resolution percent cover vegetation data to match AVIRIS data pixels. Second, the minimum noise fraction (MNF) transformation was used to extract a coherent dimensionality from the original AVIRIS data. Since the grasses and shubs were sparsely distributed and most image pixels were intermingled with lava surfaces, the reflectance component of lava was filtered out with a binary fractional cover analysis assuming that tile total reflectance of a pixel was a linear combination of the reflectance spectra of vegetation and the lava surface. Finally, a supervised approach was used to classify the plant species based on tile maximum likelihood algorithm.

  • PDF

Developing a soil water index-based Priestley-Taylor algorithm for estimating evapotranspiration over East Asia and Australia

  • Hao, Yuefeng;Baik, Jongjin;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.153-153
    • /
    • 2019
  • Evapotranspiration (ET) is an important component of hydrological processes. Accurate estimates of ET variation are of vital importance for natural hazard adaptation and water resource management. This study first developed a soil water index (SWI)-based Priestley-Taylor algorithm (SWI-PT) based on the enhanced vegetation index (EVI), SWI, net radiation, and temperature. The algorithm was then compared with a modified satellite-based Priestley-Taylor ET model (MS-PT). After examining the performance of the two models at 10 flux tower sites in different land cover types over East Asia and Australia, the daily estimates from the SWI-PT model were closer to observations than those of the MS-PT model in each land cover type. The average correlation coefficient of the SWI-PT model was 0.81, compared with 0.66 in the original MS-PT model. The average value of the root mean square error decreased from $36.46W/m^2$ to $23.37W/m^2$ in the SWI-PT model, which used different variables of soil moisture and vegetation indices to capture soil evaporation and vegetative transpiration, respectively. By using the EVI and SWI, uncertainties involved in optimizing vegetation and water constraints were reduced. The estimated ET from the MS-PT model was most sensitive (to the normalized difference vegetation index (NDVI) in forests) to net radiation ($R_n$) in grassland and cropland. The estimated ET from the SWI-PT model was most sensitive to $R_n$, followed by SWI, air temperature ($T_a$), and the EVI in each land cover type. Overall, the results showed that the MS-PT model estimates of ET in forest and cropland were weak. By replacing the fraction of soil moisture ($f_{sm}$) with the SWI and the NDVI with the EVI, the newly developed SWI-PT model captured soil evaporation and vegetation transpiration more accurately than the MS-PT model.

  • PDF

Land-cover Change detection on Korean Peninsula using NOAA AVHRR data (NOAA AVHRR 자료를 이용한 한반도 토지피복 변화 연구)

  • 김의홍;이석민
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.13-20
    • /
    • 1996
  • This study has been on detection of land-cover change on Korean peninsula (including the area of north Korean territory) between May of 1990 year and that of 1995 year using NOAA AVHRR data. It was necessary that imagery data should be registered to each other and should not be deviated much in seasonal variation in order to recognize land - cover change. Atmosphic effect such as clould and dirt was erased by maximum NDVI(Normalized Difference Vegetation Index) method the equation of which was as following $$NDVI(i,j,d)=\frac{ch2(j,j,d)-ch1(i,j,d)}{ch2(i,j,d)+ch1(i.j,d)}$$ Each image of maximum NDVI of '90 year and '95 year was c1assifed onto 8 categories ,using iso-clustering method each of which was water, wet barren and urban, crop field, field, mixed vegetation, shrub, forest and evergreen.

  • PDF

Using a Digital Echosounder to Estimate Eelgrass (Zostera marina L.) Cover and Biomass in Kwangyang Bay (디지털 음향측심기를 이용한 광양만 잘피(Zostera marina L.)의 피도와 생물량 추정)

  • Kim, Keun-Yong;Kim, Ju-Hyoung;Kim, Kwang-Young
    • ALGAE
    • /
    • v.23 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Eelgrass beds are very productive and provide nursery functions for a variety of fish and shellfish species. Management for the conservation of eelgrass beds along the Korean coasts is critical, and requires comprehensive strategies such as vegetation mapping. We suggest a mapping method to spatial distribution and quantify of eelgrass beds using a digital echosounder. Echosounding data were collected from the northeast part of Kwangyang Bay, on the south of Korea, in March, 2007. A transducer was attached to a boat equipped with a DGPS. The boat completed a transect survey scanning whole eelgrass beds of 11.7 km2 with a speed of 1.5-2 m s-1 (3-4 knot). The acoustic reflectivity of eelgrass allowed for detection and explicit measurements of canopy cover and height. The results showed that eelgrass bed was distributed in depth from 1.19 to 3.6 m (below MSL) and total dry weight biomass of 4.1 ton with a vegetation area of 4.05 km2. This technique was found to be an effective way to undertake the patch size and biomass of eelgrass over large areas as nondestructive sampling.

A study of Habitat Use Pattern of River Otters (Lutra lutra) with Land-cover Map (토지피복도를 활용한 수달의 서식지 이용에 관한 연구)

  • Lee, Sang-Don;Cho, Heesun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.377-385
    • /
    • 2005
  • The Eurasian otter(Lutra lutra) is listed as No. 330 in natural monument. To manage and conserve habitat for otters, it is critical to understand which habitat components are important for otters. The objectives of this study were to analyze otter habitat characteristics in accordance with land-cover map. We investigated otter spraints and sprainting site in Geoje Island from January to December, 2004. with GPS coordinates. The analysis of otter habitat use pattern was used by Arcview ver. 3.2 with 1: 25,000 Topology Map and field data. Otter habitat use was strongly related to sites in riparian vegetation riparian(dam or river) structures. In this study, Gucheon was a site with high coverage of riparian vegetation and unconfined channels, thus recording higher number of spraint densities than those of Yeonchocheon. Yeonchocheon was under construction at lower stream areas so that otter habitat use was limited. This study suggests that securing suitable forests and riparian vegetation zone is essential for conservation of otters.

NDVI time series analysis over central China and Mongolia

  • Park, Youn-Young;Lee, Ga-Lam;Yeom, Jong-Min;Lee, Chang-Suk;Han, Kyung-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.224-227
    • /
    • 2008
  • Land cover and its changes, affecting multiple aspects of the environmental system such as energy balance, biogeochemical cycles, hydrological cycles and the climate system, are regarded as critical elements in global change studies. Especially in arid and semiarid regions, the observation of ecosystem that is sensitive to climate change can improve an understanding of the relationships between climate and ecosystem dynamics. The purpose of this research is analyzing the ecosystem surrounding the Gobi desert in North Asia quantitatively as well as qualitatively more concretely. We used Normalized Difference Vegetation Index (NDVI) derived from SPOT-VEGETATION (VGT) sensor during 1999${\sim}$2007. Ecosystem monitoring of this area is necessary because it is a hot spot in global environment change. This study will allow predicting areas, which are prone to the rapid environmental change. Eight classes were classified and compare with MODerate resolution Imaging Spectrometer (MODIS) global land cover. The time-series analysis was carried out for these 8 classes. Class-1 and -2 have least amplitude variation with low NDVI as barren areas, while other vegetated classes increase in May and decrease in October (maximum value occurs in July and August). Although the several classes have the similar features of NDVI time-series, we detected a slight difference of inter-annual variation among these classes.

  • PDF

Ecological land cover classification of the Korean peninsula Ecological land cover classification of the Korean peninsula

  • Kim, Won-Joo;Lee, Seung-Gu;Kim, Sang-Wook;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.679-681
    • /
    • 2003
  • The objectives of this research are as follows. First, to investigate methods for a national-scale land cover map based on multi-temporal classification of MODIS data and multi-spectral classification of Landsat TM data. Second, to investigate methods to p roduce ecological zone maps of Korea based on vegetation, climate, and topographic characteristics. The results of this research can be summarized as follows. First, NDVI and EVI of MODIS can be used to ecological mapping of the country by using monthly phenological characteris tics. Second, it was found that EVI is better than NDVI in terms of atmospheric correction and vegetation mapping of dense forests of the country. Third, several ecological zones of the country can be identified from the VI maps, but exact labeling requires much field works, and sufficient field data and macro-environmental data of the country. Finally, relationship between land cover types and natural environmental factors such as temperature, precipitation, elevation, and slope could be identified.

  • PDF