• Title/Summary/Keyword: vegetation conservation

Search Result 558, Processing Time 0.034 seconds

The Vegetation Structure of Beomseom Islet, Jeju-do (제주도 범섬의 식생구조)

  • Kim Chan-Soo;Song Gwan-Pil;Moon Myong-Ok;Kang Young-Jae;Byun Gwang-Ok;Kim Moon-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.201-210
    • /
    • 2005
  • This study was conducted to prepare efficient and systematic measures for nature conservation and management in Beomseom Islet, and to provide for basic data to investigate the process of vegetation change in the future. The vegetation of Beomseom Islet was classified to six vegetation type; i.e., Miscanthus sinensis community, Pinus thunbergii community, Iythophyte vegetation, evergreen broad leaf community, shrub community, and Pseudosasa japonica community. The size of each vegetation type was 40,230 $m^2$ ($23.3\%$) for shrub community, 39,366 $m^2$($22.8\%$) for Iythophyte vegetation, 30,012 $m^2$ ($17.4\%$) fur Pinus thunbergii community, 29,853 $m^2$ ($17.3\%$) for Miscanthus sinensis community, 5,564 $m^2$ ($3.2\%$) for evergreen broad leaf community, and 3,325 $m^2$ ($1.9\%$) for Pseudosasa japonica community. The area of non-vegetated sea cliff Bone that composed of bare rocks is 24,246 $m^2$($14.1\%$). We estimated that these distribution patterns of vegetation were the result of various environmental factors such as the steepness of slope and shallowness of soil as well as the cultivation of exotic plants causing disruption of native vegetation.

Effect of New Mattress System with Vegetation Base Materials on the Vegetation Coverage of Stream bank (계안 복원을 위한 매트리스형 식생기반재 돌망태 공법의 계안사면 피복효과)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • This study was conducted to develop new mattress systems with vegetation base materials for protecting stream bank and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Peat moss can usually provide necessary natural fibers and organic materials in soil. Especially, peat moss can absorb up to 25 times its own weight in water and is therefore valued as a water retainer to prevent drying effect of vegetation base materials which can harm the growth of vegetation in mattresses. Normally mattress systems resist the lateral earth pressures or stream power by their own weight. Therefore, filled materials must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones were basically specified, and about 50-mm rubbles were also used. Test application of new mattress system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the monitoring of vegetation coverage of test application plots (each plot size is 4 by 2 m), the coverage of all plots reached 100% in the end of May, 2007 (approximately 50 days passed after the first gemination of vegetation). The coverage of the plots using big hard stones and organic composts and the plots containing peat moss increased more rapidly. The results show that peat moss is effective to retain soil moisture and establish more sound environment for vegetation gemination.

Phytosociological Community Type Classification and Stand Structure in the Forest Vegetation of Hongdo Island, Jeollanam-do Province (전라남도 홍도 산림식생의 식물사회학적 군락유형분류와 임분 구조)

  • Kim, Ho-Jin;Shin, Jae-Kwon;Lee, Cheul-Ho;Yun, Chung-Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.245-257
    • /
    • 2018
  • The study was carried out to discover the forest vegetation structure in Hongdo Island, Jeonnam province. Vegetation data were collected by total of forty one quadrate plots using Z-M phytosociological method from June to August in 2017, and analyzed by vegetation classification, mean importance value and species diversity. As a result of vegetation type classification, Castanopsis sieboldii community group was classified at a top level of vegetation hierarchy. In the level of community, it was classified into Neolitsea sericea community and Carpinus turczaninowii community. N. sericea community was subdivided into Ficus erecta group(Vegetation unit 1) and Arisaema ringens group(VU 2). C. turczaninowii community was subdivided into Fraxinus sieboldiana group(VU 3) and C. turczaninowii typical group(VU 4). Therefore, it was classified into total of four vegetation units(one community group, three communities and four groups). As a result of mean importance value, Castanopsis sieboldii was the highest in VU 1, VU 2, VU 4, and C. turczaninowii in VU 4, respectively. In case of species diversity, VU 3 showed the highest among four units in species diversity index. In conclusion, the forest vegetation of Hongdo Island was classified into four units and seven species groups. Hongdo Island could be conclusively managed by community ecological approach for the units and groups. Also it was considered that a research for the succession to the evergreen broad-leaved forest should be more intensively proceeded near future.

Environmental spatial data-based vegetation impact assessment for advanced environmental impact assessment (환경공간정보를 이용한 식생부문 환경영향평가 고도화 방안 연구)

  • Yuyoung Choi;Ji Yeon Lee;Hyun-Chan Sung
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.99-111
    • /
    • 2022
  • Vegetation is the basis for biodiversity conservation and sustainable development. In the Environmental Impact Assessment (EIA), which is the most direct and efficient policy measure to prevent degradation of nature, vegetation-related assessment has limitations as it is not based on quantitative and scientific methods. In addition, it focuses on the presence of protected species; hence, it does not take into account the role of vegetation as a habitat on a wide-area scale. As a way to overcome these limitations, this study aims to contribute to the quantification and advancement of future EIA on vegetation. Through the review of previous studies, core areas, connectivity, and vegetation condition were derived as the items to be dealt within the macroscopic aspect of vegetation impact assessment. Each item was spatially constructed using land cover maps and satellite imageries, and time series change analysis was performed. As a result, it was found that vegetation has been continuously deteriorating due to development in all aspects, and in particular, development adversely affects not only the inside of the project site but also the surrounding area. Although this study suggested the direction for improvement of the EIA in the vegetation sector based on data analysis, a more specific methodology needs to be established in order to apply it to the actual EIA process. By actively utilizing various environmental spatial data, the impact of the development on the natural ecosystem can be minimized.

A Study on Vegetation Index for Zoning of Natural Ecosystem on Baekdudaegan (백두대간 자연생태계의 지역구분을 위한 식생지수에 관한 연구)

  • 김갑태
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.3
    • /
    • pp.223-232
    • /
    • 2002
  • For the zoning of natural ecosystem, Vegetation Index is calculated from the vegetation data surveyed on Baekdudaegan (Pijae-Doraegijae). Five factors -biodiversity, conservation value of the stand, environmental quality, longevity of the stand, site productivity- are considered in the calculation of Vegetation Index. Vegetation Index might be a useful zoning tool for management of Baekdudaegan. For Vegetation Index I, 59 sample plots 52.2% of total 113 sample plots are belong to core area, 34 sample plots 30.l% and 20 sample plots 17.7% are belong to buffer zone and transition area, respectively. For Vegetation Index II, 49 sample plots 43.4% of total 113 sample plots are belong to core area, 38 sample plots 33.6% and 26 sample plots 23.0% are belong to buffer zone and transition area, respectively.

Landscape Ecology Concept, Principles and Its Rlation to Monothematic (e.g. Vegetation) Survey (경관생태학의 개념, 원리 및 식생조사와의 관계)

  • Isaak, S. Zonneveld
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.357-372
    • /
    • 1998
  • Land (scape) ecology is a trans-disciplinary science studying the related systems at the earth surface, in their visual, structural and functional aspects. it serves as an umbrella under which abiotic and biotic sciences, in an integrated way, study the for each relevant land attributes and their interrelations. The spatial aspects of these relations have a special interest. Landscape ecology my have a pure scientific purpose, but usually is executed in an applied context, related to land evaluation for land use and conservation. Depending on the aim and application of the study, one of the land attributes may get special attention. Vegetation mapping may contribute to landscape ecological study but also benefit from it especially in case of reconnaissance surveys. This is because in less detailed surveys of any land attribute, like land form, soil, vegetation, one must necessarily apply landscape ecological principles in the survey methodology, including remote sensing.

  • PDF

Coastal Sand Dune Vegetation in Kyungpook Province (경북의 해안사구식생)

  • 정용규;김종원
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.257-262
    • /
    • 1998
  • A syntaxonomical study about coastal sand dune vegetation in Kyungpook province was carried out. This study was accomplished by the methods of classical block-structure seeking and had-sorting of the $Z\"{u}rich-Montpellier$ School. The main purpose of this study is to clarify the syntaxonomical, synecological, syngeographical and syndynamical characteristics of coastal sand dune vegetation in Kyungpook province. The dune shrubs communities in Kyungpook province are consisted of 2 communities: Vitex rotundifolia community of southern type and Rosa rugosa community of northern type. And the dune grasslands communities are also consisted of 2 communities: Elymo-Caricetum kobomugi Ohba, miyawaki et $T\"{u}xen$ 1973 and carex kobomugi typical community. The subsidiary knowledges from this study will make possible to accumulate qualitative and quantitative information in the distribution pattern of coastal sand dune vegetation, and also will provide practical information for national biodiversity and conservation of coastal ecosystem.ecosystem.

  • PDF

Status and Development of National Ecosystem Survey in Korea (우리나라 전국자연환경조사 현황과 발전방안)

  • Kim, Chang-Hoe;Kang, Jong-Hyun;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.725-738
    • /
    • 2013
  • The National Ecosystem Survey in Korea provides information to policy makers for preservation of natural environment and implementation of international agreement. The 1st and 2nd National Ecosystem Survey were carried out between 1986 and 1990, and between 1997 and 2005, respectively. The 3rd National Ecosystem Survey began in 2006 and ended in 2012. In 2013 the pilot survey for the 4th National Ecosystem Survey is ongoing. The 4th National Ecosystem Survey due to the revision of the Natural Environment Conservation Act which has been done every 10 years would change into every five years. It is planned to be conducted from 2014 to 2018. The survey method of the 4th National Ecosystem Survey has been modified to obtain more accurate data for many taxa. The survey for a nocturnal animals will be introduced. In addition, monitoring by setting the grid will get quantitative data seasonally. The vegetation survey will be conducted with a mobile device contained files of aerial image maps including classified vegetation map. National Ecosystem Survey will be improved as follows. First, each survey methods suitable for the purpose should be developed. Second, monitoring methods for obtaining quantitative data should be developed. Finally, the research using the data should be developed in the field of not only ecosystem and biological diversity but also habitat assessment.

Construction of forest environmental information and evaluation of forest environment (산림환경 정보구축 및 산림환경 평가)

  • Chang, Kwan-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1998
  • This study was carried out to lead the scientific management of the urban forest by estimating the forest environment. Forest environmental information was constructed using IDRISI system based on survey data, soil, plant, and digital elevation data. Forest environmental information was consisted of soil depth, soil organic content, soil hardness and parent rock as a soil environmental factor, and forest community, tree age, crown density as a plant environmental factor. Plant activity and topographic environment also were analyzed by using remote sensing data and digital elevation data. Environmental function of urban forest was estimated based on results of soil conservation and forest productivity. 70% of urban forest is located in elevation of lower than 200m and 55% of forest area have the slope of lower than 15 degree. Analyzed soil conservation status and forest productivity were almost the same as the soil chemical properties of collected soil sample and the vegetation index estimated using remote sensing data, respectively. Thus, the constructed forest environmental information could be useful to give some ideas for management of urban forest ecosystem and establishment of environmental conservation planning, including forests, in Taejon. The best forest environmental function was appeared at the natural ecology preservation zone. Current natural parks and urban parks were appeared to establish the environmental conservation plan for further development. The worst forest environmental function was appeared at the forest near to the industrial area and an overall and systematic plan was required for the soil management and high forest productivity because these forest was developing a severe soil acidification and having a low forest productivity.

  • PDF