• 제목/요약/키워드: vector superposition method

검색결과 16건 처리시간 0.025초

Spin Wave Interference in Magnetic Nanostructures

  • Yang, Hyun-Soo;Kwon, Jae-Hyun;Mukherjee, Sankha Subhra;Jamali, Mahdi;Hayashi, Masamitsu
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 자성 및 자성재료 국제학술대회
    • /
    • pp.7-8
    • /
    • 2011
  • Although yttrium iron garnet (YIG) has provided a great vehicle for the study of spin waves in the past, associated difficulties in film deposition and device fabrication using YIG had limited the applicability of spin waves to practical devices. However, microfabrication techniques have made it possible to characterize both the resonant as well as the travelling characteristics of spin waves in permalloy (Py). A variety of methods have been used for measuring spin waves, including Brillouin light scattering (BLS), magneto-optic Kerr effect (MOKE), vector network analyzer ferromagnetic resonance (VNA-FMR), and pulse inductive microwave magnetometry (PIMM). PIMM is one of the most preferred methodologies of measuring travelling spin waves. In this method, an electrical impulse is applied at one of two coplanar waveguides patterned on top of oxide-insulated Py, producing a local disturbance in the magnetization of the Py. The resulting disturbance travels down the Py in the form of waves, and is inductively picked up by the other coplanar waveguide. We investigate the effect of the pulse width of excitation pulses on the generated spin wave packets using both experimental results and micromagnetic simulations. We show that spin wave packets generated from electrical pulses are a superposition of two separate spin wave packets, one generated from the rising edge and the other from the falling edge, which interfere either constructively or destructively with one another, depending upon the magnitude and direction of the field bias conditions. A method of spin wave amplitude modulation is also presented by the linear superposition of spin waves. We use interfering spin waves resulting from two closely spaced voltage impulses for the modulation of the magnitude of the resultant spin wave packets.

  • PDF

중첩의 원리를 이용한 센서리스 PMSM속도제어 (Sensorless Speed Control of PMSM with Superposition Principle)

  • 이동희;박성준;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.199-205
    • /
    • 2002
  • This application study presents a solution to control a Permanent Magnet Synchronous Motor without sensors. The use of this system yields enhanced operations, fewer system components, lower system cost , energy efficient control system design and increased efficiency. The control method presented is field oriented control (FOC). The sinusoidal voltage waveforms are generated by the power module using the space vector modulation technique. A practical solution is described and results are given in this application Study. The performance of a Sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in digital motor control applications whereby the focus will be the new Controller without sensors and its applications.

  • PDF

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

순방향 마이크로초 단위의 실시간 편광상태 검출 시스템 (A Feed-forward Microsecond Level Real-time SOP Finding System)

  • 정현수;신서용
    • 한국통신학회논문지
    • /
    • 제33권1C호
    • /
    • pp.94-101
    • /
    • 2008
  • 본 논문에서는 실시간으로 빛의 편광상태(SOP)를 파악할 수 있는 장치를 소개한다. 소개하는 장치는 광파를 수평 선형편광과 수직 선형편광 성분으로 분리하고, 각각을 기준 광원의 수평 선형편광 및 수직 선형편광 성분들과 중첩시키고 이로부터 발생한 비트신호들을 시간 영역에서 측정하여 비교함으로써 광파의 SOP를 파악해 내는 순방향(feed-forward) 측정 시스템으로서 귀환(feedback) 방식을 이용하는 기존의 방식들에 비해 SOP 측정시간을 실시간으로 단축시키는 장점을 갖고 있다. 본 논문에서는 또한 SOP 측정 과정에서 수반될 수 있는 광소자의 복굴절 변화에 의한 측정 오차를 매우 간편하고 정확하게 제거할 수 있는 새로운 오차 보정 방식을 소개한다. 제안하는 시스템의 동작과 성능을 모의실험 및 광학 실험을 통해 입증하였다.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

공간고조파법을 이용한 반경방향 영구자석을 갖는 자기커플링의 와전류 손실 해석 (Eddy Current Loss Analysis in Radial Flux Type Synchronous Permanent Magnet Coupling using Space Harmonic Methods)

  • 민경철;강한빛;박민규;조한욱;최장영
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1377-1383
    • /
    • 2014
  • This paper deals with eddy current loss of magnetic coupling with radial permanent magnet (PM) using analytical method such as a space harmonic method. Superposition of two kinds analysis model is used to analyze eddy current loss induced in inner PM and outer PM of magnetic coupling. When the eddy current is induced, the environmental temperature increases, and the permanent magnet(PM) characteristics are degraded because the performance of PM is greatly influenced by temperature rise. Hence, the calculation of eddy current loss becomes an important factor in the magnetic coupling. In order to analyze eddy current loss, first, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radial magnetized PM are obtained. And we obtain the analytical solutions for the eddy current density produced by permanent magnet. Lastly, analytical solutions for eddy current loss are derived by using equivalent, electrical resistance calculated from magnet volume and analytical solution for eddy current density. This analytical results are validated by comparing with the 2-D finite element analysis (FEA).