• 제목/요약/키워드: vector mechanics

검색결과 132건 처리시간 0.022초

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

Dof splitting p-adaptive meshless method

  • Kang, Myung-Seok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.535-546
    • /
    • 2001
  • A new p-adaptive analysis scheme for hp-clouds method is presented. In the scheme, refined global equations are resolved into two parts, one of them being related to the newly appended dof's. The solution obtained in previous analysis step is reflected in the force vector. The size of the p-adaptive equation consisting of the newly appended dof's is much smaller than the original equation. Consequently, the computational cost is drastically decreased. Through numerical examples, the efficiency and efficacy of the method in comparison with the existing p-refinement scheme of the hp-clouds have been demonstrated.

Speed Control of Induction Motors using GA based PI Controller

  • Lee, Jae-Do;Lee, Hak-Ju;Oh, Sung-Up;Joo, Hyung-Jun;Seong, Se-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.404-408
    • /
    • 2001
  • This paper deals with speed control of induction motors with a gain tuning based on simple Genetic Algorithms, which are search algorithms based on the mechanics of natual selection and genetics. Based on the designed control system structure, the indirect vector control system of induction motors is simulated. The simulation results show that the system has a strong robust to the parameter variation and is insensitive to the load disturbance. Thus, the proposed PI controller based on genetic algorithms is superior to manually tuned classical PI controller in improving the speed control performance of induction motors.

  • PDF

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • 제46권3호
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

Investigation on efficiency and applicability of subspace iteration method with accelerated starting vectors for calculating natural modes of structures

  • Kim, B.W.;Jung, H.J.;Hong, S.Y.
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.561-573
    • /
    • 2011
  • For efficient calculation of natural modes of structures, a numerical scheme which accelerates convergence of the subspace iteration method by employing accelerated starting Lanczos vectors was proposed in 2005. This paper is an extension of the study. The previous study simply showed feasibility of the proposed method by analyzing structures with smaller degrees of freedom. While, the present study verifies efficiency of the proposed method more rigorously by comparing closeness of conventional and accelerated starting vectors to genuine eigenvectors. This study also analyzes an example structure with larger degrees of freedom and more complex constraints in order to investigate applicability of the proposed method.

Wireless sensor network protocol comparison for bridge health assessment

  • Kilic, Gokhan
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.509-521
    • /
    • 2014
  • In this paper two protocols of Wireless Sensor Networks (WSN) are examined through both a simulation and a case study. The simulation was performed with the optimized network (OPNET) simulator while comparing the performance of the Ad-Hoc on demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols. This is compared and shown with real-world measurement of deflection from eight wireless sensor nodes. The wireless sensor response results were compared with accelerometer sensors for validation purposes. It was found that although the computer simulation suggests the AODV protocol is more accurate, in the case study no distinct difference was found. However, it was shown that AODV is still more beneficial in the field as it has a longer battery life enabling longer surveying times. This is a significant finding as a large factor in determining the use of wireless network sensors as a method of assessing structural response has been their short battery life. Thus if protocols which enhance battery life, such as the AODV protocol, are employed it may be possible in the future to couple wireless networks with solar power extending their monitoring periods.

Nonlinear dynamic analysis by Dynamic Relaxation method

  • Rezaiee-Pajand, M.;Alamatian, J.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.549-570
    • /
    • 2008
  • Numerical integration is an efficient approach for nonlinear dynamic analysis. In this paper, general category of the implicit integration errors will be discussed. In order to decrease the errors, Dynamic Relaxation method with modified time step (MFT) will be used. This procedure leads to an alternative algorithm which is very general and can be utilized with any implicit integration scheme. For numerical verification of the proposed technique, some single and multi degrees of freedom nonlinear dynamic systems will be analyzed. Moreover, results are compared with both exact and other available solutions. Suitable accuracy, high efficiency, simplicity, vector operations and automatic procedures are the main merits of the new algorithm in solving nonlinear dynamic problems.

Observer-Teacher-Learner-Based Optimization: An enhanced meta-heuristic for structural sizing design

  • Shahrouzi, Mohsen;Aghabaglou, Mahdi;Rafiee, Fataneh
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.537-550
    • /
    • 2017
  • Structural sizing is a rewarding task due to its non-convex constrained nature in the design space. In order to provide both global exploration and proper search refinement, a hybrid method is developed here based on outstanding features of Evolutionary Computing and Teaching-Learning-Based Optimization. The new method introduces an observer phase for memory exploitation in addition to vector-sum movements in the original teacher and learner phases. Proper integer coding is suited and applied for structural size optimization together with a fly-to-boundary technique and an elitism strategy. Performance of the proposed method is further evaluated treating a number of truss examples compared with teaching-learning-based optimization. The results show enhanced capability of the method in efficient and stable convergence toward the optimum and effective capturing of high quality solutions in discrete structural sizing problems.

농형 2차측을 갖는 선형 유도 전동기의 엔드바 저항을 고려한 유한 요소 해석 (Finite Element Analysis of a Linear Indution Motor with Cage-type Secondary Taking Account of End-bar Resistance)

  • 박승찬;김병택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.846-848
    • /
    • 2001
  • In this paper, electromagnetic fields of a linear induction motor with cage-type secondary are analyzed by the finite element method. Contact resistances between end-bars and secondary conductors are considered in the finite element analysis. The field quantify is a magnetic vector potential transformed into a phasor form. As a result, the sensitivities of a phase current thrust and normal force are presented according to the variation of the contact resistance.

  • PDF