• 제목/요약/키워드: vat dyes

Search Result 23, Processing Time 0.028 seconds

Color Fastness of PLA Fiber Dyed with Vat Dyes (Poly Lactic Acid 섬유의 Vat 염료에 대한 염색견뢰도)

  • Jeong, Dong-Seok;Chun, Tae-Il
    • Textile Coloration and Finishing
    • /
    • v.25 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • Colorimetric and wash fastness data after repeated wash cycles of Poly Lactic Acid(PLA) fiber were examined with C. I. Vat Blue 1, also other comparing 2 dyes (C. I. Vat Blue 35, C. I. Vat Blue 5), in this study. The fastness of three vat dyes on PLA fiber to repeated washing according to KS K 0430 A-2 regulation increased with dyeing temperatures. The $L^*$ values of the dyed material gradually increased with increasing numbers of wash. Also the f(k) values were decreased reversely. During repeated washing, the vagrant dyes were deposited especially on nylon, polyester, cotton of the adjacent multifiber. C. I. Vat Blue 5 displayed lowest color change to repeated washing of the three dyes used.

Dyeing Properties and Color Fastness of Cotton, Nylon and Polyester Dyed with Vat Dyes (배트염료에 의한 면, 나일론 및 폴리에스테르 섬유의 염색성과 견뢰도)

  • Jeong, Dong-Seok;Choi, Mi-Nam;Jung, Dae-Ho;Gwon, Oh-Chul;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.11-19
    • /
    • 2005
  • Textile dyeing with vat dyes has the highest color fastness although one and the same dye of all vat dyes cannot always satisfy every color fastness requirement. So we examined cotton, nylon 6, and polyester fabrics dyed with vat dyes. Cotton, nylon 6 and polyester fabrics were dyed with vat dyes such as C. I. Vat Blue 1, Blue 19, Black 9, Green 1, Orange 2, and Violet 1 containing sodium hydrosulfite and NaOH. Oxidation were carried out by a sodium peroxoborate after dyeing. The dyed materials were soaped at the boil after oxidation. Especially hydrolysis and overreduction for dyed polyester with vats dyes containing -NHCO- and -NH- groups such as C. I. Vat Blue 6, Black 25, Black 27, Red 10, and Green 3 occurred. It seems that these phenomena are due to a high dyeing temperature. Wash and rubbing fastness of nylon are higher than that of cotton and polyester. Light fastness of cotton is higher than that of polyester and nylon.

Dyeing Properties of Nylon 6 and Polyester Fabrics with Vat Dyes - Effect of Composition of Reducing Agent and Alkali on Color Change - (배트염료에 의한 나일론과 폴리에스테르 섬유의 염색성 - 색상 변화에 미치는 하이드로슬파이트와 NaOH의 영향 -)

  • ;;;Tomiji Wakida
    • Textile Coloration and Finishing
    • /
    • v.14 no.5
    • /
    • pp.284-293
    • /
    • 2002
  • Nylon 6 and polyester taffeta fabrics are dyed in aqueous medium with vat dyes such as Indanthren Red FBB, Mikethren Blue ACE and Mikethren Blue HR varying the compositions of sodium hydrosulfite and NaOH. Also nylon UMF nonwoven and polyester UMF knitted fabrics are dyed with metal complex and disperse dyes as a reference, and the wash and rubbing fastnesses for these dyes are investigated. In vat dyeing of polyester and nylon taffeta, an optimum composition of sodium hydrosulfite/NaOH is existed at a range of 1∼2wt%/0.2wt%. A good build-up property for Mikethren Blue ACE on nylon 6 UMF nonwoven fabric is shown at high temperature. Vat dyeing of polyester with Mikethren Blue Ace shows a good color shade in a higher temperature, while dyeing with Mitsui Blue HR shows low temperatures. Vat dyes In dyeing of both nylon 6 UMF nonwoven and polyester UMF knitted fabrics have a better wash fastnesses compared with metal complex or disperse dyes.

Dyeing of Polyvinyl Alcohol Fibers in Filament Yarn Form with Reactive and Vat Dyes

  • Rashad, Mahmood;Kim, Sam-Soo;Huh, Man-Woo;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.19 no.5
    • /
    • pp.17-23
    • /
    • 2007
  • As polyvinyl alcohol(PVA) filament yarn is commercially used in many fields due to its high strength and modulus properties. This research was carried out to study the dyeing behavior of PVA and to find out appropriate dye for better dyeing. As the dyeing behavior of PVA fiber is similar to cellulose due to the same functional group, reactive and vat dyes were selected for the dyeing. Color strength of PVA fibers treated with vat dyes was found to be better than those with reactive dyes, because of the low fixation of reactive dye on fibers. Most of the reactive dye may became hydrolyzed, and flushed away with water in washing. Colorfastness to laundering was shown to be very high for both of the reactive-dyed and vat-dyed PVA fibers.

A Comparative Study of Indigo Dyes and Dyeing in 19th Century Korea and England

  • Kim, Soon-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.12
    • /
    • pp.1933-1946
    • /
    • 2010
  • This paper is a comparative analysis of the $19^{th}$ century practice of indigo dyes and dyeing in Korea and England. From over hundreds species of indigo plants in the world, it was dyer's knotweed and woad that were cultivated in Korea; however, the only indigo plant grown in England was woad. Indigo dye was produced in the form of damp indigo sediment (jeon) in Korea; however, imported indigo (as a main dye) and couched woad (as an additional dye) were indigo dyes used in England. There existed three kinds of indigo vats, the ice vat, ash-water vat, and indigo sediment (jeon) vat, in Korea. The fresh leaves of indigo were used for both the ice vat and ash-water vat. The ice vat was very convenient for preparation, but had a weakness in the inability to produce a very deep shade of blue. The ash-water vat and indigo sediment (jeon) vat were in use for producing a very deep shade of blue. The indigo sediment Goon) vat was employed presumably only by professional dyers. The indigo vat practiced in England was categorized into two types; one was woad-indigo vat, and the other was an indigo powder vat prepared by using imported indigo rock. There was a tendency to adopt different kinds of indigo vats according to the material to be dyed. The woad-indigo vat was employed for the dyeing of wool. A few of chemical vats with imported indigo were adopted, especially for the dyeing of cotton. Indigo dyers in 19th century Korea were differentiated from the rest of the dyers. They managed the growing of indigo plants as well as the production of indigo sediment (jeon). Woad dyers in 19th century England handled woolen cloth as well as worsted and woolen yarn in general. However, they sometimes dyed silk skein as well. They produced several colors such as black, blue, slates, grays, by using both woad and imported indigo.

The Application of Non-ionic Vat dye to Polyester Fiber : Practical Aspects and Preliminary Studies (비이온성 배트염료의 폴리에스터 섬유에의 응용)

  • 손영아;김태경
    • Textile Coloration and Finishing
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • Dyeings of the most widely used to the synthetic fibers, namely polyamide and polyester, have been carried out using acid dyes and disperse dyes. The above mentioned dye types, and indeed all dyes onto substrates, rely on the reaction properties between the substrates and dye molecules. In terms of fastness properties, however, especially to washings, the satisfactory levels are not present in the results from acid and disperse dyeings. Thus, vat dyeings leaves a feasibility and are an alternative way to overcome the problem. Although attempts and works have been reported in early years, with little if any commercial achievement and success. In this context, to meet increased demands towards a high level of wash fastness from consumers and retailers, an attempt using vat dyes has been carried out in this work.

High Fastness Dyeing Technology of Polyester Microfiber with Several Disperse Dyes and Vat dye (수종의 분산 염료 및 환원염료에 의한 Polyester microfiber의 고견뢰 염색기술)

  • 백진주;권오대;손아름;이난형;김삼수
    • Textile Coloration and Finishing
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • Polyester microfiber has usually greater dye uptake than normal denier polyester fiber in same dyeing condition. In spite of this high dye uptake dyed microfiber fabric has not only low visual colour depth but also poor washing fastness property. In order to study high colouring dyeing technology and high washing fastness of polyester microfiber, dyeing property of polyester microfiber was investigated according to the dye solubility and particle size of used disperse dyes in aqueous dye solution. After disperse dyeing, dyed fabric with disperse dye was redyed with a vat dye without reduction clearing in order to obtain a high washing fastness property. The result were as followings ; A small particle sized disperse dyes such as C. I. Disperse Blue 56 and Red 60 showed high rate of initial exhaution compared with a large particle sized disperse dyes like C. I. Disperse Blue 165 and Red 343. In study of dyeing property of polyester microfiber with C. I. Vat Blue 1, polyester microfiber could achieve high dye uptake at a given optimum vatting process conditions. On the other hand, in consecutive dyeing with disperse and vat dye, K/S value of polyester microfiber with a small particle sized disperse dye increased without reduction clearings, but K/S value of polyester microfiber with a large particle sized disperse dye decreased with reduction clearings.

The Color Matching Algorithm in Near Infrared Range for Military Camouflage (IR영역에서의 위장염색을 위한 칼라 매칭 알고리즘 연구)

  • Song Kyung-Hun;Yuk Jong-Il;Ha Hun-Seung;Lee Tae-Sang;You Young-Eun;Lee Si-Woo
    • Textile Coloration and Finishing
    • /
    • v.17 no.4 s.83
    • /
    • pp.7-14
    • /
    • 2005
  • The purpose of this study was to develop the color matching program with the excellent camouflage capacity in the near infrared range($\~$1100nm) including the visible light range for cotton fabrics. It was measured IR spectral reflectance in the range of $380\~1,100nm$ after dyed with vat dyes, and we made database for reflectance with various concentration on vat dyes which have a low reflectance value in the infrared range. The color matching algorithm that could be simulated in both the human visible light and the near infrared range was constructed by numerical analysis method using the database. In this study we also developed the dyeing conditions and dyeing process through the continuous-dyeing experiment with the vat dyes for cotton fabrics.

Dyeing and Fastness Properties of Vat Dyes on a Novel Regenerated Cellulosic Fiber

  • Lee Jung Jin;Shim Woo Sub;Kim Ik Soo;Kim Jae PH
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.244-249
    • /
    • 2005
  • enVix is a novel regenerated cellulosic fiber, which is prepared from cellulose diacetate fiber using environmentally friendly manufacturing process. Vat dyeing properties of the enVix were investigated and compared with those ofregular viscose rayon. The enVix exhibited better dyeability than viscose rayon. The colour yields of vat dyes on the enVix were found to be dependent on dyeing temperature as well as the amount of levelling agent and salt. Good build-up and good to excellent fastness properties were obtained on the en Vix fabric.

Dyeing Properties of Synthetic Fibers with Indigoid Vat Dye (인디고계 배트염료에 의한 합성섬유의 염색성)

  • Jang, Hye Yeong;Kim, Ho Jeong;Lee, Mun Cheol
    • Textile Coloration and Finishing
    • /
    • v.13 no.5
    • /
    • pp.41-41
    • /
    • 2001
  • In this study, synthetic fiber fabrics such as polyester, nylon 6, acrylic and acetate were dyed with indigoid vat dye. The effects of the composition of alkaline reduction, dyeing time and dyeing temperature on color strength and color fastness of the fabrics were investigated. Also the color fastnesses to wash and light of the dyed fabrics were studied. In dyeing of polyester, nylon, acrylic and acetate fiber fabrics with indigo vat dyes, it appears that these fabrics have high values of K/S up to Ig/L of sodium hydroxide and 6g/L of reducing agent. Indigo vat dyeing for synthetic fiber fabrics was verb fast, and lead to dyeing equilibrium within twenty minutes. The K/S values of dyed fabrics did not changed in dye concentration more than 10% o.w.f.. Synthetic fiber fabrics dyed with indigoid dyes had bad light fastness.