• Title/Summary/Keyword: vasorelaxation

검색결과 127건 처리시간 0.025초

Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

  • Cho, Eun-Jung;Park, Myoung-Soo;Kim, Sahng-Seop;Kang, Gun;Choi, Sung-A;Lee, Yoo-Rhan;Chang, Seok-Jong;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.339-344
    • /
    • 2011
  • Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD ($10{\sim}100{\mu}g/ml)$ did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of $0.1{\sim}10{\mu}g/ml$ with an $ED_{50}$ value of $2{\mu}g/ml$. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high $K^+$ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.

Vasorelaxation and Antiproliferation of Apigenin

  • Zhang, Y.H.;Kim, T.J.;Park, Y.S.;Park, S.R.;Park, Y.J.;Lee, S.Y.;Yun, Y.P.
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2000년도 NEW STRATEGY FOR DRUG DEVELOPMENT IN POST-GENOMIC ERA(대한약학회)
    • /
    • pp.155.2-155.2
    • /
    • 2000
  • PDF

Influence of Nicorandil on Aortic Strip's Contractility and Blood Pressure of the Rat

  • Lim, Dong-Yoon;Kim, Yong-Jik;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • 제13권1호
    • /
    • pp.48-58
    • /
    • 2005
  • The present study was conducted to investigate the effects of nicorandil on arterial blood pressure and vascular contractile responses in the normotensive anesthetized rats and to establish the mechanism of action. Nicorandil (30~300 ${\mu}g/kg$) given into a femoral vein of the normotensive anesthetized rat produced a dose-dependent depressor response. These nicorandil-induced hypotensive responses were not affected by pretreatment with atropine (3.0 mg/kg, i.v.) or propranolol (2.0 mg/kg, i.v.), while markedly inhibited in the presence of chlorisondamine (1.0 mg/kg, i.v.) or phentolamine (2.0 mg/kg, i.v.). Futhermore, after the pretreatment with 4-aminopyridine (1.0 mg/kg/30 min, i.v.) or glibenclamide (50.0 ${\mu}g/kg$/30min) into a femoral vein made a significant reproduction in pressor responses induced by intravenous norepinephrine. In he isolated rat aortic strips, both phenylephrine (10$^{-5}$ M)- and high potassium (5.6 ${\times}\;10^{-2}$ M)-inducedcontractile responses were dose-dependently depressed in the presence of nicorandil (25~100 ${\mu}M$). Collectively, these experimental results demonstrate that intravenous nicorandil causes a dose-dependent depressor action in the anesthetized rat at least partly through the blockade of vascular adrenergic ${\alpha}_1$-receptors, in addition to the well-known mechanism of potassium channel opening-induced vasorelaxation.

The Effect of Rheum palmatum L. and Rheum undulatum L. on Rat Thoracic Aorta and Abdominal Aorta

  • Kim, Tack;Kim, Hyung-Hwan;Ahn, Duk-Kyun;Choi, Ho-Young
    • 대한한의학회지
    • /
    • 제24권4호
    • /
    • pp.87-91
    • /
    • 2003
  • Objectives: To examine the relaxational response to the water extract of Rheum palmatum L. and Rheum undulatum L. on rat thoracic aorta and abdominal aorta. Methods: Segments of thoracic aorta and abdominal aorta obtained from rats immediately after delivery were mounted in organ baths superfused on a polygraph. Results : We found that the thoracic aorta segments responded to the water extract of genus Rheum with a dose-dependent vasorelaxation. At $10^{-4}$ M 5-HT, the maximal contraction force was 93.5% of the maximum KCI-response. The 5-HT induced contractions at $10^{-4}$ M were inhibited by 86.4% and 62.1 % after addition of the high concentrations of R. palmatum root (RPR) and leaf (RPL) and R. undulatum root (RUR) and leaf (RUL). At 10 mg/ml RPR and RUR, the relaxational response at thoracic aorta and abdominal aorta with and without endothelium were 86.4%, 83.2%, 85.8%, and 62.1% of the maximum 5-HT induced contraction. Conclusion: Our result showed that RPL and RUL induced dose-dependent vasorelaxation on rat thoracic aorta and abdominal aorta, and that RPL and RUL roots have more potent effects than the leaves.

  • PDF

Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling

  • Shin, Woosung;Yoon, Jeongyeon;Oh, Goo Taeg;Ryoo, Sungwoo
    • Journal of Ginseng Research
    • /
    • 제37권1호
    • /
    • pp.64-73
    • /
    • 2013
  • Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis.

흰쥐에서 Gentamicin 투여가 심혈관계에 미치는 영향 (Cardiovascular Effects of Gentamicin Administration in Rats)

  • 김상진;강형섭;백삼권;박상열;김인식;김남수;김진상
    • 한국임상수의학회지
    • /
    • 제21권3호
    • /
    • pp.291-297
    • /
    • 2004
  • Aminoglycosidic antibiotics have multiple effects on muscle. For example, they have been shown to block L-type $Ca^{2+}$ channels in vascular smooth muscle, cardiac muscle and skeletal muscle. Possibly as a consequence of this effect on $Ca^{2+}$ influx, they have been shown to decrease the contractility of cardiac muscle (gentamicin). The present study evaluated the effects of gentamicin on blood pressure, vasorelaxation and left ventricular pressure. Gentamicin(10, 20, 40mg/kg) produced dose-dependent blood pressure lowering in rat. The pretreatment of MgSO$_4$ and imipramine (Na$^{+}$-Mg$^{2+}$ exchange inhibitor) had no effect in gentamicin-induced hypotension. However, the gentamicin-induced hypotension was significantly potentiated in the preincubation of verapamil or nifedipine (L-type $Ca^{2+}$ channel blockers), and was significantly attenuated by CaCl$_2$ and was slightly attenuated by caffeine (phosphodiesterase inhibitor). Gentamicin (10, 30, 100$\mu$g/m1) did not have an effect on relaxation of phenylephrine-precontracted aortic rings but high concentration of gentamicin(100, 300$\mu$g/ml) relaxed KCl-precontracted aortic rings, which relaxation was potentiated by treatment of nifedipine. Whereas gentamicin markedly decreased left ventricular developed pressure (LVDP) in perfused heart. These data suggest that gentamicin has significant blood pressure lowering of the rat, which seems to be mediated by calcium channel-sensitive pathway and blood $Ca^{2+}$ level may be important role in this response.

Ginsenosides Evoke Vasorelaxation in Rat Aortic Rings: Involvement of $Ca^{2+}$-dependent $K^+$ Channels

  • Nak Doo Kim;Soo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.182-189
    • /
    • 1998
  • Administration of ginsenosides, a mixture of saponin extracted from Panax ginseng, decreased blood pressure in rat. Previous studies have shown that ginsenosides caused endothelium-dependent relaxation, which was associated with the formation of cyclic GMP, suggested that ginsenosides caused release of nitric oxide (NO) from the vascular endothelium. The aim of the present study was to characterize the endothelium-independent relaxation to ginsenosides in the isolated rat aorta. Ginsenosides caused a concentration-dependent relaxation of rat aortic rings without endothelium constricted with 25 mM KCI but affected only minimally those constricted with 60 mM KCI. Ginsenoside Rg3 (Rg3) was a more potent vasorelaxing agonist than total ginsenoside mixture and also the ginsenoside PPT and PPD groups. Relaxation to ginsenosides were markedly reduced by TEA, but not by glibenclamide. Rg3 significantly inhibited Cal'-induced concentration-contraction curves and the "50a2'influx in aortic rings incubated in 25 mM KCI whereas those responses were not affected in 60 mM KCI. Rg3 caused efflux of $"Rb in aortic rings that was inhibited by tetraethy- lammonium (TEA), an inhibitor of Ca"-dependent K'channels, but not by glibenclamide, an inhibitor of AfP-dependent K'channels. These findings indicate that ginsenosides may induce vasorelaxation via activation of Ca2'-dependent K'channels resulting in hyperpolarization of the vas- cular smooth muscle with subsequent inhibition of the opening of voltage-dependent Caf'channels. These effects could contribute to explain the red ginseng-associated vasodilation and the beneficial effect on the cardiovascular system.

  • PDF

Quercetin에 의한 혈관이완효과에 대한 알코올의 추가적인 역할 (The Synergistic Effect of Additional Ethanol Exposure on Quercetin-induced Vasorelaxation in a Vasoconstrictor-dependent Manner)

  • 진영배;제현동
    • 약학회지
    • /
    • 제54권5호
    • /
    • pp.392-397
    • /
    • 2010
  • The aim of present study was to investigate the possible influence and related mechanism of additional alcohol on the flavonoid- induced arterial relaxation. Agonist-induced vascular smooth muscle contractions involve the activation of thick or thin filament pathway. However, there are no reports addressing the question whether this pathway is involved in quercetin-induced relaxation cotreated with alcohol in rat aortae contracted with phorbol ester, fluoride or thromboxane $A_2$ mimetic U-46619. We hypothesized that cotreated alcohol plays a role in vascular relaxation evoked by quercetin in rat aortae. Endothelium-denuded arterial rings from male Sprague-Dawley rats were used and isometric contractions were recorded using a computerized data acquisition system. Quercetin inhibited phorbol ester, fluoride or thromboxane $A_2$-induced contraction regardless of endothelial function. However, alcohol didn't decrease any agonist-induced contraction. Interestingly, only in thromboxane $A_2$-induced contraction, synergistic results were observed in aortae denuded and cotreated with quercetin and alcohol suggesting that additional pathways different from antioxidation or endothelial nitric oxide synthesis might be involved in the vasorelaxation. In conclusion, in the agonists-contracted rat aortae, quercetin and alcohol together showed synergistic response regardless of endothelial function in an agonist-dependent manner.

Vasorelaxing Mechanism of Crude Saponin of Korea Red Ginseng in the Resistance-sized Mesenteric Artery of Rat

  • Kim, Shin-Hye;Park, Hyung-Seo;Lee, Mee-Young;Oh, Young-Sun;Kim, Se-Hoon
    • Journal of Ginseng Research
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2002
  • 고려홍삼은 혈압강하효과가 있음이 잘 알려져 있다. 이에 백서장간막이 동맥의 저항혈관에서 고려홍삼 사포닌 성분의 혈관 이완기전을 규명하고자 내경이 150$\mu\textrm{m}$이하의 작은 혈관을 이요하여 여러 실험 조건에서 장력의 변화를 측정하여 다음과 같은 결과를 얻었다. 고려홍삼 사포닌 성분은 농도 의존적으로 (0.01mg/$m\ell$~1mg/$m\ell$) 혈관 평활근을 이완시켰으며 내피세포를 제거한 상태에서도 혈관의 이완효과는 지속되었다. A23187 이나 phorbol 12, 13-dibutyrate 에 의한 수축에서는 고려홍삼 사포닌에 의한 혈관의 이완효과가 나타나지 않았다. 고려홍삼 사포닌에 의한 혈관이완효과는 실험용액의 $K^{+}$ 농도를 증가시키면 감소되었으며 각종 $K^{+}$이 온통로 억제제인 tetaethylammonium, glybenclamide, 4-aminopyridine 및 BaCl$_2$를 전처치한 결과 BaCl$_2$에 의해서만 농도에 의존적으로 고려홍삼 사포닌에 의한 혈관이완작용이 억제되었다. 이상의 실험결과로부터 고려홍삼 사포닌은 장간막 동맥의 저항혈관에서 $K^{+}$의 유출을 증가시켜 혈관평활근을 이완시키며 $Ba^{2+}$에 의하여 차단되는 $K^{+}$ 이온통로가 고려홍삼 사포닌에 의한 혈관이완작용에 관여함을 알 수 있었다.

Effect of Arsenic on Acetylcholine-Induced Relaxation in Blood Vessels

  • Lee, M.Y.;Chung, S.M.;Bae, O.N.;Chung, J.H.
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.163.2-164
    • /
    • 2003
  • Several epidemiological studies suggested that arsenic exposure was strongly correlated with the development of cardiovascular disease such as hypertension. In order to examine whether arsenic affects vasomotor tone in blood vessels, we investigated the effect of arsenic on agonist-induced vasorelaxation using the isolated rat aortic rings in vitro organ bath system.Treatment with arsenite inhibited acetylcholine-induced relaxation of aortic rings in a concentration-dependent manner. (omitted)

  • PDF