• Title/Summary/Keyword: various thermal distributions

Search Result 142, Processing Time 0.03 seconds

Study on the Conjugate Heat Transfer Analysis Methodology of Thermal Barrier Coating on the Internal Cooled Nozzle (내부냉각노즐의 열차폐코팅을 위한 복합열전달 해석기법 연구)

  • Kim, Inkyom;Kim, Jinuk;Rhee, Dong-Ho;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.38-45
    • /
    • 2015
  • In this study, two computational methodologies were compared to consider an effective conjugate heat transfer analysis technique for the cooled vane with thermal barrier coating. The first one is the physical modeling method of the TBC layer on the vane surface, which means solid volume of the TBC on the vane surface. The second one is the numerical modeling method of the TBC layer by putting the heat resistance interface condition on the surface between the fluid and solid domains, which means no physical layer on the vane surface. For those two methodologies, conjugate heat transfer analyses were conducted for the cooled vane with TBC layer having various thickness from 0.1 mm to 0.3 mm. Static pressure distributions for two cases show quite similar patterns in the overall region while the physical modeling shows quite a little difference around the throat area. Thermal analyses indicated that the metal temperature distributions are quite similar for both methods. The results show that the numerical modeling method can reduce the computational resources significantly and is quite suitable method to evaluate the overall performance of TBC even though it does not reflect the exact geometry and flow field characteristics on the vane surface.

The Effect of Analysis Variables on the Failure Probability of the Reactor Pressure Vessel by Pressurized Thermal Shock (가압열충격에 의한 원자로 압력용기의 파손확률에 미치는 해석변수의 영향)

  • Jang, Chang-Heui;Jhung, Myung-Jo;Kang, Suk-Chull;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.693-700
    • /
    • 2004
  • The probabilistic fracture mechanics(PFM) is a useful analytical tool to assess the integrity of reactor pressure vessel(RPV) at the event of pressurized thermal shock(PTS). In PFM, the probabilities of flaw initiation and propagation are estimated by comparing the applied stress intensity factor with the fracture toughness calculated by the simulation of various stochastic variables. It is known that the results of PFM analyses are dependent on the choice of the stochastic parameters and assumptions. Of the various variables and assumptions, we investigated the effects of the RT$_{NDT}$ shift equations, fracture toughness curves, and flaw distributions on the PFM results for the three PTS transients. The results showed that the combined effects of the RT$_{NDT}$ shift equations and fracture toughness curves are complicated and dependent on the characteristics of the transients, the chemistry of the materials, the fast neutron fluence, and so on.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

Lubrication Analysis of Parallel Slider Bearing with Nanolubricant (나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석)

  • TaeJo Park;JeongGuk Kang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

Unsteady Heat Transfer Analysis of Radiant Heating Panel (복사 난방 패널의 과도 열전달 해석)

  • Lee, T.W.;Kim, H.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.3
    • /
    • pp.191-203
    • /
    • 1992
  • To analyze the unsteady heat transfer phenomena in radiant heating panel, a mathematical model was considered. Numerical analysis for solving the governing equations was conducted by using the finite difference method with boundary-fitted meshes. Transient temperature distributions and thermal responses in heating panel were obtained for various design parameters such as pipe pitches, pipe diameters and pipe depths. Experimental results were also obtained to verify the results of calculation.

  • PDF

Comparison of the Characteristics of Sprays between Water and Nanofluid Sprays (물과 나노유체의 분무 특성 비교)

  • Kang, B.S.;Lee, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.82-87
    • /
    • 2014
  • Nanofluids are that metallic or nonmetallic nanometer-sized particles are dispersed in liquid. They can be used in various fields to increase the heat transfer rate because the thermal conductivity of nanofluids can be increased significantly. Nanofluids may be used as a good alternative of coolants in spray cooling. This study conducted experiments to compare the characteristics of sprays between water and nanofluid sprays. The radial distributions of droplet velocities and diameters of water, 0.2% wt.(weight), and 0.5% wt. $Al_2O_3$ nanofluids at the pressure of 0.2 and 0.3 MPa were measured by laser doppler instruments. The radial distributions of droplet diameters and velocities at two axial positions with water and 0.2% wt. nanofluid sprays didn't show much difference. A big difference, however, was observed between 0.5% wt. nanofluid and water sprays. With the increase of the mass of nano-particles, the average droplet diameters were increased and the average droplet velocities were decreased.

Resonance frequency and stability of composite micro/nanoshell via deep neural network trained by adaptive momentum-based approach

  • Yan, Yunrui
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.477-491
    • /
    • 2022
  • In the present study, the effects of thermal loading on the buckling and resonance frequency of graphene platelets (GPL) reinforced nano-composites are examined. Functionally graded (FG) material properties are considered in thickness direction for the thermal responses of the composite. The equivalent material properties are obtained using Halphin-Tsai nano-mechanical model for composite layers. Moreover, the effects of nano-scale sizes are taken into account, employing functionally modified couple stress (FMCS) parameter. In this regard, for the first time, it is demonstrated that at certain values of GPL weight fraction, thermal buckling occurs. In obtaining results of vibrational behavior, both analytical solution and deep neural network (DNN) methods are used. The DNN method needs low computational costs to predict the resonance behavior. A comprehensive parametric study is conducted to indicate the effects of several geometrical, material, and loading conditions on the vibrational and buckling behavior of cylindrical shell structures made of GPL-nanocomposites. It is shown that the effect of temperature change on the occurrence of buckling is vital while it has a negligible impact on the resonance frequency of the structure. Moreover, the size-dependency of the results is demonstrated, and it cannot be neglected in nano-scales.

FEM Analysis on Temperature Distribution and Thermal Stress of a Brake Drum for Large Commercial Vehicle (대형 상용차용 브레이크 드럼의 온도 분포 및 열응력에 관한 유한요소 해석)

  • Kim, Ho-Kyung;Lee, Young-In;Joo, Se-Min
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.7-13
    • /
    • 2006
  • A transient heat transfer and thermal stress analysis for a brake drum of commercial vehicles have been performed by ANSYS code in the cases of single braking and the repeated braking condition. The temperature and thermal stress distributions in the brake drum under various braking conditions were obtained using a two-dimensional axisymmetric model. In case of deceleration of 0.3G with an initial vehicle speed of 60km/h, the maximum temperature in the drum was $87.6^{\circ}C$ after braking application. The maximum stress of 78.7MPa in the drum occurred at the intersection between the flange and hat under a condition in which repeated 15 cycles braking with an initial vehicle speed of 60km/h and a deceleration of 0.3G is applied to according to KS R1129. The maximum stress value is much lower than the yield strength of drum material(FC250).

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.