• 제목/요약/키워드: variational characteristics

검색결과 124건 처리시간 0.02초

Free vibration analysis of tall buildings with outrigger-belt truss system

  • Malekinejad, Mohsen;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.89-107
    • /
    • 2011
  • In this paper a simple mathematical model is presented for estimating the natural frequencies and corresponding mode shapes of a tall building with outrigger-belt truss system. For this purposes an equivalent continuum system is analyzed in which a tall building structure is replaced by an idealized cantilever continuum beam representing the structural characteristics. The equivalent system is comprised of a cantilever shear beam in parallel to a cantilever flexural beam that is constrained by a rotational spring at outrigger-belt truss location. The mathematical modeling and the derivation of the equation of motion are given for the cantilevers with identically paralleled and rotational spring. The equation of motion and the associated boundary conditions are analytically obtained by using Hamilton's variational principle. After obtaining non-trivial solution of the eigensystem, the resulting is used to determine the natural frequencies and associated mode shapes of free vibration analysis. A numerical example for a 40 story tall building has been solved with proposed method and finite element method. The results of the proposed mathematical model have good adaptation with those obtained from finite element analysis. Proposed model is practically suitable for quick evaluations during the preliminary design stages.

Effect of surface bolt on the collapse mechanism of a shallow rectangular cavity

  • Huang, Fu;Zhao, Lian-heng;Zhang, Sheng
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.505-515
    • /
    • 2017
  • Based on the collapse characteristics of a shallow rectangular cavity, a three-dimensional failure mechanism which can be used to study the collapsing region of the rock mass above a shallow cavity roof is constructed. Considering the effects of surcharge pressure and surface bolt on the collapsing block, the external rate of works produced by surcharge pressure and surface bolt are included in the energy dissipation calculation. Using variational approach, an analytic expression of surface equation for the collapsing block, which can be used to study the collapsing region of the rock mass above a shallow cavity roof, is derived in the framework of upper bound theorem. Based on the analytic expression of surface equation, the shape of the collapsing block for shallow cavity is drawn. Moreover, the changing law of the collapsing region for different parameters indicates that the collapsing region of rock mass decreases with the increase of the density of surface bolt. This conclusion can provide reference for practicing geotechnical engineers to achieve an optimal design of supporting structure for a shallow cavity.

Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system

  • Jiang, Lizhong;Feng, Yulin;Zhou, Wangbao;He, Binbin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.591-600
    • /
    • 2019
  • Based on the energy-variational principle, a coupling vibration analysis model of high-speed railway simply supported beam bridge-track structure system (HSRBTS) was established by considering the effect of shear deformation. The vibration differential equation and natural boundary conditions of HSRBTS were derived by considering the interlayer slip effect. Then, an analytic calculation method for the natural vibration frequency of this system was obtained. By taking two simply supported beam bridges of high-speed railway of 24 m and 32 m in span as examples, ANSYS and MIDAS finite-element numerical calculation methods were compared with the analytic method established in this paper. The calculation results show that two of them agree well with each other, validating the analytic method reported in this paper. The analytic method established in this study was used to evaluate the natural vibration characteristics of HSRBTS under different interlayer stiffness and length of rails at different subgrade sections. The results show that the vertical interlayer compressive stiffness had a great influence on the high-order natural vibration frequency of HSRBTS, and the effect of longitudinal interlayer slip stiffness on the natural vibration frequency of HSRBTS could be ignored. Under different vertical interlayer stiffness conditions, the subgrade section of HSRBTS has a critical rail length, and the critical length of rail at subgrade section decreases with the increase in vertical interlayer compressive stiffness.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

A Case Study of Creative Art Based on AI Generation Technology

  • Qianqian Jiang;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.84-89
    • /
    • 2023
  • In recent years, with the breakthrough of Artificial Intelligence (AI) technology in deep learning algorithms such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE), AI generation technology has rapidly expanded in various sub-sectors in the art field. 2022 as the explosive year of AI-generated art, especially in the creation of AI-generated art creative design, many excellent works have been born, which has improved the work efficiency of art design. This study analyzed the application design characteristics of AI generation technology in two sub fields of artistic creative design of AI painting and AI animation production , and compares the differences between traditional painting and AI painting in the field of painting. Through the research of this paper, the advantages and problems in the process of AI creative design are summarized. Although AI art designs are affected by technical limitations, there are still flaws in artworks and practical problems such as copyright and income, but it provides a strong technical guarantee in the expansion of subdivisions of artistic innovation and technology integration, and has extremely high research value.

Service ability design of vibrating chiral SWCNTs: Validation and parametric study

  • Muzamal Hussain;Mohamed R. Ali;Abdelhakim Benslimane;Humaira Sharif;Mohamed A. Khadimallah;Muhammad Nawaz Naeem;Imene Harbaoui;Sofiene Helaili;Aqib Majeed;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제32권4호
    • /
    • pp.393-398
    • /
    • 2023
  • This paper provides the free vibrations of chiral carbon nanotubes. The governing equations of Flügge theory is considered for vibration frequencies of chiral single walled carbon nanotubes. The solution of frequency equation is obtained from a novel model for better representation of stubby and short vibration characteristics of chiral tubes with clamped-clamped and clamped-simply supported end conditions. For the harmonic response of this tube, the model displacement function is adopted. The variational approach Rayleigh-Ritz method with kinetic and strain energies are used. The Lagragian function is differentiated with respect to unknown functions. The frequency equation is written in compact form to solve with MATLAB software. The frequencies of chiral SWCNTs for first ten aspect ratios as small level are investigated. The results shown as for decreasing the aspect rations, the frequencies are increases. The presented results of this model are verified with experimental and numerical results, which found as an excellent agreement.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

음성특징의 거리에 기반한 한국어 발음의 시각화 (Visualization of Korean Speech Based on the Distance of Acoustic Features)

  • 복거철
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.197-205
    • /
    • 2020
  • 한국어는 자음과 모음과 같은 음소 단위의 발음은 고정되어 있고 표기에 대응하는 발음은 변하지 않기 때문에 외국인 학습자가 쉽게 접근할 수 있다. 그러나 단어와 어구, 문장을 말할 때는 음절과 음절의 경계에서 소리의 변동이 다양하고 복잡하며 표기와 발음이 일치하지 않기 때문에 외국어로서의 한국어 표준 발음 학습은 어려운 면이 있다. 그러나 영어 같은 다른 언어와 달리 한국어의 표기와 발음의 관계는 논리적인 원리에 따라 예외 없이 규칙화 할 수 있는 장점이 있으므로 발음오류에 대해 체계적인 분석이 가능한 것으로 여겨진다. 본 연구에서는 오류 발음과 표준 발음의 차이를 컴퓨터 화면상의 상대적 거리로 표현하여 시각화하는 모델을 제시한다. 기존 연구에서는 발음의 특징을 단지 컬러 또는 3차원 그래픽으로 표현하거나 입과 구강의 변화하는 형태를 애니메이션으로 보여 주는 방식에 머물러 있으며 추출하는 음성의 특징도 구간의 평균과 같은 점 데이터를 이용하는데 그치고 있다. 본 연구에서는 시계열로 표현되는 음성데이터의 특성 및 구조를 요약하거나 변형하지 않고 직접 이용하는 방법을 제시한다. 이를 위해서 딥러닝 기법을 토대로 자기조직화 알고리즘과 variational autoencoder(VAE) 모델 및 마코브 확률모델을 결합한 확률적 SOM-VAE 기법을 사용하여 클러스터링 성능을 향상시켰다.

구조적 서명 검증에서의 참조 서명의 데이터 크기 고정화 기법 (A Technique for Fixing Size of Reference Signature Data in Structural Signature Verificaiton)

  • 이이섭;김성훈
    • 한국정보통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1345-1352
    • /
    • 2010
  • 구조적 접근방법에 의한 서명검증은 서명을 부분획 단위의 집합 구조로 표현하여 서명 데이터를 분석하기 때문에 서명의 국부적인 변화의 특성을 효율적으로 흡수하여 우수한 검증 효과를 나타낸다. 그러나 이 방법은 실용화할 때 데이터의 크기가 고정되지 않는 문제가 발생한다. 이 논문에서는 이 문제를 해결하기 위하여, 상대적으로 중요한 부분을 선택하여 데이터를 고정크기로 만듦으로서 데이터의 크기를 줄이는 방법을 제안한다. 실험 결과, 고정된 크기로 선택된 서브패턴에 대해서 국부적인 변화도와 복잡도에 의한 가중치를 적용한 결과, 더 좋은 검증율을 보였으며, 이 때 고정된 크기를 만들기 위한 최소 크기의 참조 모델의 서브패턴의 개수는 일정 갯수의 범위에서 적절히 고정될 수 있음을 보였다.

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제42권5호
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.